Published online by Cambridge University Press: 20 November 2018
Let ${{\sigma }_{\mathbb{Z}}}\left( k \right)$ be the smallest
$n$ such that there exists an identity
$$\left( x_{1}^{2}\,+\,x_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,x_{k}^{2} \right)\,\cdot \,\left( y_{1}^{2}\,+\,y_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,y_{k}^{2} \right)\,=\,f_{1}^{2}\,+\,f_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,f_{n}^{2},$$
${{f}_{1}},...,\,{{f}_{n}}$ being polynomials with integer coefficients in the variables
${{x}_{1}},...,\,{{x}_{k}}$ and
${{y}_{1}},...,\,{{y}_{k}}$. We prove that
${{\sigma }_{\mathbb{Z}}}\left( k \right)\,\ge \,\Omega \left( {{k}^{{6}/{5}\;}} \right)$.