Published online by Cambridge University Press: 20 November 2018
A construction of an epi-reflector by injective hull techniques is given which applies to the class of models of any universal theory with the Amalgamation Property and there yields a weak but functorial type of algebraic closure. Various completions such as the boolean envelope and quotient field constructions are identified as such injective hulls over epimorphic injections. Forms of the Amalgamation Property are also shown to eliminate various pathologies of epimorphisms and equalizers.