Article contents
An estimate for the composition of rough singular integral operators
Published online by Cambridge University Press: 07 December 2020
Abstract
Let $\Omega $ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$ , $T_{\Omega }$ be the convolution singular integral operator with kernel $\frac {\Omega (x)}{|x|^d}$ . In this paper, we prove that if $\Omega \in L\log L(S^{d-1})$ , and U is an operator which is bounded on $L^2(\mathbb {R}^d)$ and satisfies the weak type endpoint estimate of $L(\log L)^{\beta }$ type, then the composition operator $UT_{\Omega }$ satisfies a weak type endpoint estimate of $L(\log L)^{\beta +1}$ type.
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
Footnotes
The research of X.T was supported by the NNSF of China under grant #11771399, and the research of G.H. (corresponding author) was supported by the NNSF of China under grant #11871108.
References
- 1
- Cited by