Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:51:09.583Z Has data issue: false hasContentIssue false

An Explicit Formula for the Generalized Cyclic Shuffle Map

Published online by Cambridge University Press:  20 November 2018

Jiao Zhang
Affiliation:
Department of Mathematics, Shanghai University, 99 Shangda Road, BaoShan District, 200444, Shanghai, P.R. China e-mail: zhangjiao.math@gmail.comwqw858@yahoo.com.cn
Qing-Wen Wang
Affiliation:
Department of Mathematics, Shanghai University, 99 Shangda Road, BaoShan District, 200444, Shanghai, P.R. China e-mail: zhangjiao.math@gmail.comwqw858@yahoo.com.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide an explicit formula for the generalized cyclic shuffle map for cylindrical modules. Using this formula we give a combinatorial proof of the generalized cyclic Eilenberg–Zilber theorem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Bauval, A., Théoréme d’Eilenberg–Zilber en homologie cyclique entiére. Prépublications du Laboratoire Emile Picard (1998), no. 112.Google Scholar
[2] Getzler, E. and Jones, J. D. S., A1-algebras and the cyclic bar complex. Illinois J. Math. 34 (1990), no. 2, 256283.Google Scholar
[3] Getzler, E. and Jones, J. D. S., The cyclic homology of crossed product algebras. J. Reine Angew. Math. 445 (1993), 163174.Google Scholar
[4] Khalkhali, M. and Rangipour, B., On the generalized cyclic Eilenberg–Zilber Theorem. Canad. Math. Bull. 47 (2004), no. 1, 3848. http://dx.doi.org/10.4153/CMB-2004-006-x Google Scholar
[5] Kustermans, J., Rognes, J., and Tuset, L., The Connes-Moscovici approach to cyclic cohomology forcompact quantum groups. K-Theory 26 (2002), no. 2, 101137. http://dx.doi.org/10.1023/A:1020306706620 Google Scholar
[6] Loday, J.-L., Cyclic homology. Second ed., Grundlehren der MathematischenWissenschaften, 301, Springer-Verlag, Berlin, 1998.Google Scholar
[7] Mac Lane, S., Homology. Reprint of the 1975 edition. Classics in Mathematics, Springer-Verlag, Berlin, 1995.Google Scholar
[8] Rinehart, G. S., Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195222. http://dx.doi.org/10.1090/S0002-9947-1963-0154906-3 Google Scholar
[9] Zhang, J. and Hu, N., Cyclic homology of strong smash product algebras. J. Reine Angew. Math. 663 (2012), 177207.Google Scholar