No CrossRef data available.
Article contents
An Inverse Mapping Theorem in Frechet Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Within the framework of a-differentiability, introduced by H. R. Fischer in locally convex spaces, sufficient conditions for an inverse mapping theorem between Fréchet spaces are established.
Resume
En se basant sur les propriétés de la σ-différentiabilité introduite par H. R. Fischer dans les espaces localement convexes, les auteurs établissent des conditions suffisantes pour obtenir un théorème “d'application inverse” entre deux espaces de Fréchet.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1986
References
2.
Fischer, H.R., Differentialrechnung in lokalkonvexen Râumen und Mannigfaltigkeiten von Abbildungen, Manuskript der Fakultàt fur Mathematik und Informatik, Universitàt Mannheim, Mannheim
1977.Google Scholar
3.
Hamilton, R.S., The inverse function theorem of Nash and Moser, Bulletin of the American Mathematical Society, Vol.
7 (1982), pp. 65–222.Google Scholar
4.
Lojasiewicz, S., Inverse function theorem, Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Vol. 441 (1977), pp. 7–9.Google Scholar
5.
Lojasiewicz, S. and Zehnder, E., An inverse function theorem in Fréchet spaces, Journal of Functional Analysis, Vol.
33 (1979), pp. 165–174.Google Scholar
6.
Omori, H., Infinite dimensional Lie transformation groups, Lectures Notes in Mathematics, 427, Springer Verlag, 1974.Google Scholar
7.
Yamamuro, S., Notes on the inverse mapping theorem in locally convex spaces, Bulletin of the Australian Mathematical Society, Vol. 21 (1980), pp. 419–461.Google Scholar
8.
Yamamuro, S., Differential calculus in topological linear spaces, Lectures Notes in Mathematics, 374, Springer Verlag, 1974.Google Scholar
You have
Access