Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:15:14.845Z Has data issue: false hasContentIssue false

Approximation by Rational Mappings, via Homotopy Theory

Published online by Cambridge University Press:  20 November 2018

P. M. Gauthier
Affiliation:
Département de mathématiques et statistique, Université de Montréal, Centreville, Montréal, Québec, H3C 3J7 email: gauthier@dms.umontreal.ca
E. S. Zeron
Affiliation:
Departamento de Matemáticas, CINVESTAV, Apdo. Postal 14-740, México DF, 07000 México email: eszeron@math.cinvestav.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Continuous mappings defined from compact subsets $K$ of complex Euclidean space ${{\mathbb{C}}^{n}}$ into complex projective space ${{\mathbb{P}}^{m}}$ are approximated by rational mappings. The fundamental tool employed is homotopy theory.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[1] Alexander, H. and Wermer, J., Several Complex Variables and Banach Algebras, third edition. Graduate Texts in Math. 35, Springer-Verlag, New York, 1998.Google Scholar
[2] Bredon, Glen E., Topology and geometry. Graduate Texts in Math. 139, Springer-Verlag, New York, 1993.Google Scholar
[3] Dubrovin, B. A., Fomenko, A. T. and Novikov, S. P., Modern geometry—methods and applications. Part III. Introduction to homology theory. Graduate Texts in Math. 124, Springer-Verlag, New York, 1990.Google Scholar
[4] Dodson, C. T. J. and Parker, P. E., A user's guide to algebraic topology. Math. Appl. 387, Kluwer Academic Publishers, Dordrecht, 1997.Google Scholar
[5] Gamelin, T. W., Uniform algebras. Prentice-Hall, Englewood Cliffs, N. J., 1969.Google Scholar
[6] Gauthier, P. M., Roth, A. and Walsh, J. L., Possibility of uniform rational approximation in the spherical metric. Canad. J. Math. 28(1976), no. 1, 112115.Google Scholar
[7] Grauert, H., Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133(1957), 450472.Google Scholar
[8] Grauert, H. and Kerner, H., Approximation von holomorphen Schnittflächen in Faserbündeln mit homogener Faser. Arch. Math. 14(1963), 328333.Google Scholar
[9] Hörmander, L. and Wermer, J., Uniform approximation on compact sets in n. Math. Scand. 23(1968), 521.Google Scholar
[10] Kuratowski, K., Topology, Vol. II. Academic Press, New York and London, 1968.Google Scholar
[11] Milnor, J., Morse theory. Ann. of Math. Studies 51, Princeton University Press, Princeton, N.J., 1963.Google Scholar
[12] Munkres, J. R., Elements of algebraic topology. Addison-Wesley, Menlo Park, CA, 1984.Google Scholar
[13] Nirenberg, R. and Wells, R. O. Jr., Approximation theorems on differentiable submanifolds of a complex manifold. Trans. Amer.Math. Soc. 142(1969), 1535.Google Scholar
[14] Siu, Yum-Tong, Every Stein subvariety admits a Stein neighborhood. Invent. Math. (1) 38(1976), 89100.Google Scholar