Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-19T15:23:54.875Z Has data issue: false hasContentIssue false

Averages Involving Fourier Coefficients of Non-Analytic Automorphic Forms

Published online by Cambridge University Press:  20 November 2018

V. Venugopal Rao*
Affiliation:
University of Saskatchewan, Regina, Saskatchewan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(τ) be a complex valued function, defined and analytic in the upper half of the complex τ plane (τ=x+iy, y > 0), such that f(τ+λ) = f(τ) where λ is real and f(-1/τ) = γ(-iτ)k f(τ), k being a complex number. The function (—iτ)k is defined as ek log(-iτ) where log(—iτ) has the real value when — iτ is positive and γ is a complex number with absolute value 1. Such functions have been studied by E. Hecke [4] who calls them functions with signature (λ, k, γ). We further assume that f(τ) = O(|y| -c) as y tends to zero uniformly for all x, c being a positive real number. It then follows that f(τ) has a Fourier expansion of the type f(τ) = a0 + Σ an exp(2πinτ/λ) (n = 1,2,…), the series being convergent absolutely in the upper half plane.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1970

Footnotes

(1)

Supported partially by NSF Grant GP-4520.

References

1. Bateman Manuscript Project, Higher transcendental functions, Vol. 1, McGraw-Hill, 1953.Google Scholar
2. Chandrasekharan, K. and Raghavan, Narasimhan, Heche's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23.Google Scholar
3. Chandrasekharan, K. and Minakshisundaram, S., Typical means, Tata Institute Monographs 1, 1952.Google Scholar
4. Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Annalen 112 (1936), 664-699.Google Scholar
5. Maass, H., Automorphe Funktionen und indefinite quadratische Formen, Sitzgsber. Heidelberg. Akad. Wiss. Math.-naturwiss. Kl. Abh. (1949), 1-42.Google Scholar
6. Maass, H., Die Differentialgleichungen in der Théorie der elliptischen Modulfunktionen, Math. Annalen 125 (1953), 235-263.Google Scholar
7. Maass, H., Über die räumliche Verteilung der Punk te in Gittern mit indefiniter Metrik, Math. Annalen 138 (1959), 287-315.Google Scholar
8. Magnus, W. und Oberhettinger, F., Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, 1948.Google Scholar
9. Siegel, C. L., Über die analytische Théorie der quadratischen Formen II, Ann. o. Math. 37 (1936), 230-263.Google Scholar
10. Siegel, C. L., Indefinite quadratische Formen und Modulfunktionen, Courant Anniversary volume, 1948. 395-406.Google Scholar
11. Siegel, C. L., Indefinite quadratische Formen und Funktionentheorie I, Math. Annalen 124 (1951), 17-54.Google Scholar
12. Rao, V. V., The lattice point problem for indefinite quadratic forms with rational coefficients, J. Indian Math. Soc. 21 (1957), 1-40.Google Scholar