Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T05:54:16.275Z Has data issue: false hasContentIssue false

C* -Algebras of Real Rank Zero Whose K0's are not Riesz Groups

Published online by Cambridge University Press:  20 November 2018

K. R. Goodearl*
Affiliation:
Department of Mathematics, University of California Santa Barbara, California 93106, U.S.A., e-mail: goodearl@math.ucsb.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Examples are constructed of stably finite, imitai, separable C* -algebras A of real rank zero such that the partially ordered abelian groups K0(A) do not satisfy the Riesz decomposition property. This contrasts with the result of Zhang that projections in C* -algebras of real rank zero satisfy Riesz decomposition. The construction method also produces a stably finite, unital, separable C* -algebra of real rank zero which has the same K-theory as an approximately finite dimensional C*-algebra, but is not itself approximately finite dimensional.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Blackadar, B., K-Theory for Operator Algebras, M.S.R.I. Publ. 5, Springer-Verlag, 1986, New York.Google Scholar
2. Brown, L. G. and Dàdarlât, M., Extensions of C*-algebras and quasidiagonality, J. London Math. Soc. (2) 53(1996), 582600.Google Scholar
3. Brown, L. G. and Pedersen, G. K., C-algebras of real rank zero, J. Funct. Anal. 99(1991), 131149.Google Scholar
4. Brown, L. G. and Pedersen, G. K., On the geometry of the unit ball of a C-algebra, J. Reine Angew. Math. 469(1995), 113147.Google Scholar
5. Bures, D., Non-isomorphic C*-algebras with isomorphic n by n matrix rings, C. R. Math. Rep. Acad. Sci. Canada 3(1981), 323328.Google Scholar
6. Dàdarlât, M. and Loring, T. A., Extensions of certain real rank zero C*-algebras, Ann. Inst. Fourier 44(1994), 907925.Google Scholar
7. Effros, E. G., Handelman, D. E. and Shen, C.-L., Dimension groups and their affine representations, Amer. J. Math. 102(1980), 385407.Google Scholar
8. Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38(1976), 2944.Google Scholar
9. Elliott, G. A., Dimension groups with torsion, Internat. J. Math. 1(1990), 361—380.Google Scholar
10. Elliott, G. A., On the classification of C*-algebras of real rank zero, J. Reine Angew. Math. 443(1993), 179219.Google Scholar
11. Goodearl, K. R., Von Neumann Regular Rings, London, 1979, Pitman; 2nd. ed., Krieger, 1991, Melbourne, Florida.Google Scholar
12. Goodearl, K. R., Partially Ordered Abelian Groups with Interpolation, Math. Surveys and Monographs 20, Amer. Math. Soc, Providence, 1986.Google Scholar
13. Goodearl, K. R., Notes on a class of simple C*-algebras with real rank zero, Publ. Mat. (Barcelona) 36(1992), 637654.Google Scholar
14. Goodearl, K. R., K0 of multiplier algebras of C*-algebras with real rank zero, K-Theory 10(1996), 419489.Google Scholar
15. Goodearl, K. R., Handelman, D. E. and Lawrence, J. W., Affine representations of Grothendieck groups and applications to Rickart C* -algebras and א-continuous regular rings, Mem. Amer. Math. Soc. 234(1980).Google Scholar
16. Lin, H. and Rordam, M., Extensions of inductive limits of circle algebras, J. London Math. Soc. (2) 51(1995), 603613.Google Scholar
17. Menai, P., Remark on the stable range of C*-algebras, Comm. Algebra 13(1985), 15551558.Google Scholar
18. Menai, P. and Moncasi, J., On regular rings with stable range 2, J. Pure Appl. Algebra 24(1982), 2540.Google Scholar
19. Moncasi, J., A regular ring whose Ko is not a Riesz group, Comm. Algebra 13(1985), 125131.Google Scholar
20. Pedersen, G. K., The λ-function in operator algebras, J. Operator Theory 26(1991), 345381.Google Scholar
21. Plastiras, J., C*-algebras isomorphic after tensoring, Proc. Amer. Math. Soc. 66(1977), 276278.Google Scholar
22. Rieffel, M. A., Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. (3) 46(1983), 301333.Google Scholar
23. Rosenberg, J. and Schochet, C., The Kunneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55(1987), 431474.Google Scholar
24. Spielberg, J. S., Embedding C*-algebra extensions into AF algebras, J. Funct. Anal. 81(1988), 325344.Google Scholar
25. Vaserstein, L. N., Stable rank of rings and dimensionality of topological spaces, Functional Anal. Appl. 5(1971), 102110.Google Scholar
26. Zhang, S., A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 24(1990), 209225.Google Scholar
27. Zhang, S., C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part III, Canad. J. Math. 62(1990), 159190.Google Scholar
28. Zhang, S., K1-groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325(1991), 793818.Google Scholar