No CrossRef data available.
Article contents
Centrification of algebras and Hopf algebras
Part of:
Hopf algebras, quantum groups and related topics
Rings and algebras arising under various constructions
Published online by Cambridge University Press: 08 April 2021
Abstract
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
Keywords
MSC classification
Primary:
16S15: Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
Secondary:
16T05: Hopf algebras and their applications
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2021
References
Arik, M. and Kayserilioglu, U., The anticommutator spin algebra, its representations and quantum group invariance. Int. J. Modern Phys. A 18(2003), 5039–5045. https://doi.org/10.1142/s0217751x03015933
CrossRefGoogle Scholar
Brown, K. and Goodearl, K.,
Lectures on algebraic quantum groups
. Advanced Courses in Mathematics, CRM, Birkhäuser Verlag, Barcelona, Basel, 2002. https://doi.org/10.1007/978-3-0348-8205-7
CrossRefGoogle Scholar
Gorodnii, M. and Podkolzin, G., Irreducible representations of a graded Lie algebra. In: Spectral theory of operators and infinite-dimensional analysis, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984, 66–77.Google Scholar
Kharchenko, V.,
Quantum Lie theory. A multilinear approach
. Lecture Notes in Math., 2150, Springer, Berlin, Germany, 2015. https://doi.org/10.1007/978-3-319-22704-7
Google Scholar
Korovnichenko, A. and Zhedanov, A.,
Classical Leonard triples
. In: Elliptic integrable systems (Kyoto, 2004), Rokko Lectures in Mathematics, 18, Kobe University, Kobe, Japan, 2005, pp. 71–84.Google Scholar
Montgomery, S.,
Hopf algebras and their actions on rings
. CBMS Regional Conf. Ser. in Math., 82, American Mathematical Society, Providence, RI, 1993. https://doi.org/10.1090/cbms/082
CrossRefGoogle Scholar
Rumynin, D., Hopf-Galois extensions with central invariants and their geometric properties. Algebr. Represent. Theory 1(1998), 353–381. https://doi.org/10.1023/a:1009944607078
CrossRefGoogle Scholar
Schneider, H., Representation theory of Hopf Galois extensions. Israel J. Math. 72(1990), 196–231. https://doi.org/10.1007/BF02764620
CrossRefGoogle Scholar
Takeuchi, M., On the dimension of the space of integrals of Hopf algebras. J. Algebra 21(1972), 174–177. https://doi.org/10.1016/0021-8693(72)90015-4
CrossRefGoogle Scholar
Terwilliger, P., The universal Askey-Wilson algebra. SIGMA Symmetry Integrability Geom. Methods Appl. 7(2011), 24. https://doi.org/10.3842/sigma.2011.069
Google Scholar
Tsujimoto, S., Vinet, L., and Zhedanov, A., Dunkl shift operators and Bannai-Ito polynomials. Adv. Math. 229(2012), 2123–2158. https://doi.org/10.1016/j.aim.2011.12.020
CrossRefGoogle Scholar
Weibel, C.,
An introduction to homological algebra
. Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/cbo9781139644136
CrossRefGoogle Scholar
Zhedanov, A., “Hidden symmetry” of Askey-Wilson polynomials. Teoret. Mat. Fiz. 89(1991), 190–204. https://doi.org/10.1007/bf01015906
Google Scholar