Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T13:53:51.402Z Has data issue: false hasContentIssue false

Cercles de remplissage for the Riemann Zeta Function

Published online by Cambridge University Press:  20 November 2018

P. M. Gauthier*
Affiliation:
Département de mathématiques et de statistique et Centre de rechèrches mathématiques, Université de Montréal, CP 6128 Centre Ville, Montréal, Québec, H3C 3J7, email: gauthier@dms.umontreal.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The celebrated theorem of Picard asserts that each non-constant entire function assumes every value infinitely often, with at most one exception. The Riemann zeta function has this Picard behaviour in a sequence of discs lying in the critical band and whose diameters tend to zero. According to the Riemann hypothesis, the value zero would be this (unique) exceptional value.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[1] Bohr, H. and Courant, R., Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion. J. Reine Angew.Math. 144 (1914), 249274,Google Scholar
[2] Gauthier, P., A criterion for normalcy. Nagoya Math. J. 32 (1968), 277282.Google Scholar
[3] Ostrowski, A., Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes. Math. Z. 24 (1926), 215258.Google Scholar
[4] Titchmarsh, E. C., The theory of the Riemann zeta-function. 2nd edition (ed. D. R. Heath-Brown), Clarendon Press, Oxford University Press, New York, 1986.Google Scholar