Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T13:15:21.208Z Has data issue: false hasContentIssue false

A Characterization of Bergman Spaces on the Unit Ball of ℂn. II

Published online by Cambridge University Press:  20 November 2018

Songxiao Li
Affiliation:
Department of Mathematics, Jiaying University, Meizhou, Guangdong 514015, China e-mail: jyulsx@163.com
Hasi Wulan
Affiliation:
Department of Mathematics, Shantou University, Shantou, Guangdong 515063, Chinawulan@stu.edu.cn
Kehe Zhu
Affiliation:
Department of Mathematics and Statistics, State University of New York, Albany, NY 12222, USAkzhu@math.albany.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It has been shown that a holomorphic function $f$ in the unit ball ${{\mathbb{B}}_{n}}$ of ${{\mathbb{C}}_{n}}$ belongs to the weighted Bergman space $A_{\alpha }^{p},\,p\,>\,n\,+\,1\,+\alpha $, if and only if the function $\left| f(z)\,-\,f(w) \right|/\left| 1\,-\,\left\langle z,\,w \right\rangle \right|$ is in ${{L}^{p}}({{\mathbb{B}}_{n}}\,\times \,{{\mathbb{B}}_{n}},\,d{{v}_{\beta }}\,\times \,d{{v}_{\beta }})$, where $\beta \,=\,(p\,+\,\alpha \,-\,n\,-\,1)/2$ and $d{{v}_{\beta }}(z)\,=\,{{(1\,-\,{{\left| z \right|}^{2}})}^{\beta }}\,dv(z)$. In this paper we consider the range $0\,<\,p\,<\,n\,+\,1\,+\,\alpha $ and show that in this case, $f\,\in \,A_{\alpha }^{p}\,(\text{i})$ (i) if and only if the function $\left| f(z)\,-\,f(w) \right|/\left| 1\,-\,\left\langle z,\,w \right\rangle \right|$ is in ${{L}^{p}}({{\mathbb{B}}_{n}}\,\times \,{{\mathbb{B}}_{n}},\,d{{v}_{\alpha }}\,\times \,d{{v}_{\alpha }})$, (ii) if and only if the function $\left| f(z)\,-\,f(w) \right|/\left| z\,-\,w \right|$ is in ${{L}^{p}}({{\mathbb{B}}_{n}}\,\times \,{{\mathbb{B}}_{n}},\,d{{v}_{\alpha }}\,\times \,d{{v}_{\alpha }})$. We think the revealed difference in the weights for the double integrals between the cases $0\,<\,p\,<\,n\,+\,1\,+\,\alpha $ and $p\,>\,n\,+\,1\,+\,\alpha $ is particularly interesting.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Holland, F. and Walsh, D., Criteria for membership of Bloch space and its subspace. BMOA. Math. Ann. 273(1986), no. 2, 317335. doi:10.1007/BF01451410Google Scholar
[2] Li, S., Wulan, H., Zhao, R., and Zhu, K., A characterization of Bergman spaces on the unit ball of n . Glasg. Math. J. 51(2009), no. 2, 315330. doi:10.1017/S0017089509004996Google Scholar
[3] Wulan, H. and Zhu, K., Lipschitz type characterizations for Bergman spaces. Canad. Math. Bull. 52(2009), no. 4, 613626. doi:10.4153/CMB-2009-060-6Google Scholar
[4] Zhu, K., Operator Theory in Function Spaces. Second edition. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence, RI, 2007.Google Scholar
[5] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226. Springer-Velag, New York, 2005.Google Scholar