Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:17:09.861Z Has data issue: false hasContentIssue false

A Comparison of Methods for Constructing Probability Measures on Infinite Product Spaces

Published online by Cambridge University Press:  20 November 2018

Charles W. Lamb*
Affiliation:
Department of mathematics university of british columbia vancouver, B.C. V6T 1Y4 Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The construction, from a consistent family of finite dimensional probability measures, of a probability measure on a product space when the marginal measures are perfect is shown to follow from a classical theorem due to Ionescu Tulcea and known results on the existence of regular conditional probability functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Dinculeanu, N., Remarques sur les mesures dans les espaces produits, Colloqium Mathematicum 5 (1957), pp. 5154.Google Scholar
2. Faden, A.M., The existence of regular conditional probabilities: necessary and sufficient conditions, Ann. Probab. 13 (1985), pp. 288298.Google Scholar
3. Gnedenko, B. and Kolmogorov, A., Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, 1954, originally published 1949.Google Scholar
4. Ionescu Tulcea, C. T., Measures dans les espaces produits, Atti. Acad. Naz. Lincei Rend. 7 (1949), pp. 208211.Google Scholar
5. Kolmogorov, A., Grundbegriffe de Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik , Springer, Berlin, 1933.Google Scholar
6. Marczewski, E., On compact measures, Fund. Math. 40 (1953), pp. 111124.Google Scholar
7. von Neumann, J., Functional Operators, Vol. 1: Measures and integrals, Ann. Math. Studies 21, Princeton, 1950, reprint of multigraphed edition of 1935.Google Scholar
8. Pachl, J., Disintegration and compact measures, Math. Scand. 43 (1978), pp. 157—168.Google Scholar
9. Ramachandran, D., Perfect Measures, Part I, MacMillan, Delhi, 1979.Google Scholar
10. Ramachandran, D., Perfect Measures, Part II, MacMillan, Delhi, 1979.Google Scholar
11. Ryll-Nardzewski, C., On quasi-compact measures, Fund. Math. 40 (1953), pp. 125130.Google Scholar
12. Sazonov, V.V., On perfect measures, Amer. Math. Soc. Transi. Series (2) 48 (1965), pp. 229254.Google Scholar