Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T18:21:30.404Z Has data issue: false hasContentIssue false

Convexity of the Field of a Linear Transformation

Published online by Cambridge University Press:  20 November 2018

A. J. Goldman
Affiliation:
National Bureau of Standards and University of British Columbia
M. Marcus
Affiliation:
National Bureau of Standards and University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Un be an n-dimensional unitary space with inner product In Un let Sn-1 denote the unit sphere:

Let A be an arbitrary linear transformation of Un.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1959

References

1. Halmos, P.R., Finite dimensional vector spaces, Annals of Mathematics Studies Number 7, (Princeton, 1942), 83-84.Google Scholar
2. Hausdorff, F., Der Wertvorrat einer Bilinearform, Math, Zeit. 3(1919), 314-316.Google Scholar
3. Stone, M.H., Linear transformations in Hilbert space, A.M.S.Colloquium Publication XV, (1932), 131-133.Google Scholar
4. Toeplitz, O., Das algebraische Analogen zu einem Satze von Fejer, Math. Zeit. 2(1918), 187-197.Google Scholar
5. Wintner, A, Spektraltheorie der unendlichen Matrizen, (Leipzig, 1929), 34-37.Google Scholar