Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T09:55:26.715Z Has data issue: false hasContentIssue false

Cyclic Vectors in Some Weighted Lp Spaces of Entire Functions

Published online by Cambridge University Press:  20 November 2018

Kou Hei Izuchi*
Affiliation:
Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, Japan 060-0810. e-mail: khizuchi@math.sci.hokudai.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we generalize a result recently obtained by the author. We characterize the cyclic vectors in $L_{a}^{p}\,\left( \mathbb{C},\,\phi \right)$ . Let $f\,\in \,L_{a}^{p}\,\left( \mathbb{C},\,\phi \right)$ and $fC$ be contained in the space. We show that $f$ is non-vanishing if and only if $f$ is cyclic.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2008

References

[BG] Berenstein, C. and Gay, R., Complex Variables. Graduate Texts in Mathematics 125, Springer-Verlag, New York, 1991.Google Scholar
[BS] Brown, L. and Shields, A. L., Cyclic vectors in the Dirichlet space. Trans. Amer.Math. Soc. 285(1984), no. 1, 269303.Google Scholar
[CG] Chen, X. and Guo, K., Analytic Hilbert Modules. CRC Research Notes in Mathematics 433, Chapman & Hall/CRC, Boca Raton, FL, 2003.Google Scholar
[CGH] Chen, X., Guo, K., and Hou, S., Analytic Hilbert spaces over the complex plane. J. Math. Anal. Appl. 268(2002), no. 2, 684700.Google Scholar
[Gar] Garnett, J. B., Bounded Analytic Functions. Pure and Applied Mathematics 96, Academic Press, New York, 1981.Google Scholar
[GW] Garling, D. J. H. and Wojtaszczyk, P., Some Bargmann spaces of analytic functions. In: Function Spaces. Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1995, pp. 123138.Google Scholar
[GZ] Guo, K. and Zheng, D., Invariant subspaces, quasi-invariant subspaces, and Hankel operators. J. Funct. Anal. 187(2001), no. 2, 308342.Google Scholar
[HKZ] Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.Google Scholar
[Izu] Izuchi, K. H., Cyclic vectors in the Fock space over the complex plane. Proc. Amer.Math. Soc. 133(2005), no. 12, 36273630.Google Scholar
[MMO] Marco, N., Massaneda, X., and Ortega-Cerdà, J., Interpolating and sampling sequences for entire functions. Geom. Funct. Anal. 13(2003), no. 4, 862914.Google Scholar
[OS] Ortega-Cerdà, J. and Seip, K., Beurling-type density theorems for weighted Lp spaces of entire functions. J. Anal. Math. 75(1998), 247266.Google Scholar