Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T23:06:45.119Z Has data issue: false hasContentIssue false

Diophantine Approximation for CertainAlgebraic Formal Power Series in PositiveCharacteristic

Published online by Cambridge University Press:  20 November 2018

K. Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences, Département de Mathématiques, BP 802, 3038 Sfax, Tunisie e-mail: ayedikhalil@yahoo.frmmmhbaib@gmail.comfaiza.mahjoub@yahoo.fr
M. Hbaib
Affiliation:
Université de Sfax, Faculté des Sciences, Département de Mathématiques, BP 802, 3038 Sfax, Tunisie e-mail: ayedikhalil@yahoo.frmmmhbaib@gmail.comfaiza.mahjoub@yahoo.fr
F. Mahjoub
Affiliation:
Université de Sfax, Faculté des Sciences, Département de Mathématiques, BP 802, 3038 Sfax, Tunisie e-mail: ayedikhalil@yahoo.frmmmhbaib@gmail.comfaiza.mahjoub@yahoo.fr
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study rational approximations for certain algebraic power series over a finite field. We obtain results for irrational elements of strictly positive degree satisfying an equation of the type

$$\alpha =\frac{A{{\alpha }^{q}}+B}{C{{\alpha }^{q}}},$$

where $\left( A,B,C \right)\,\in \,{{\left( {{\mathbb{F}}_{q}}\left[ X \right] \right)}^{2}}\times \mathbb{F}_{q}^{*}\left[ X \right]$. In particular, under some conditions on the polynomials $A,\,B$ and $C$, we will give well approximated elements satisfying this equation.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Baum, L. E. and Sweet, M. M., Continued fractions of algebraic power series in characteristic 2. Ann. of Math. 103 (1976), no. 3, 593610. http://dx.doi.org/10.2307/1970953 Google Scholar
[2] de Mathan, B., Approximation exponents for algebraic functions. Acta Arith. 60 (1992), no. 4, 359370.Google Scholar
[3] de Mathan, B., Irrationality measures and transcendance in positive characteristic. J. Number Theory 54 (1995), no. 1, 93112. http://dx.doi.org/10.1006/jnth.1995.1104 Google Scholar
[4] Hbaib, M., Mkaouar, M., and Tounsi, K., Un critère de transcendance de fractions continues dans Kp((X-1)). J. Number Theory 116 (2006), no. 1, 140149 . http://dx.doi.org/10.1016/j.jnt.2005.03.008 Google Scholar
[5] Lasjaunias, A., A survey of Diophantine approximation in fields of power series. Monatsh. Math. 130 (2000), no. 3, 211229. http://dx.doi.org/10.1007/s006050070036 Google Scholar
[6] Lasjaunias, A., Continued fractions for algebraic formal power series over a finite base field. Finite Fields Appl. 5 (1999), no. 1, 4656. http://dx.doi.org/10.1006/ffta.1998.0236 Google Scholar
[7] Mahler, K., On a theorem of Liouville in fields of positive characteristic. Canad. J. Math. 1 (1949), 397400. http://dx.doi.org/10.4153/CJM-1949-035-0 Google Scholar
[8] Mills, W. H. and Robbins, D. P., Continued fractions for certain algebraic power series. J. Number Theor. 23 (1986), no. 3, 388404. http://dx.doi.org/10.1016/0022-314X(86)90083-1 Google Scholar
[9] Mkaouar, M., Sur le développement en fractions continues des séries formelles quadratiques sur F2(X). J. Number Theory 80 (2000), no. 2, 169173. http://dx.doi.org/10.1006/jnth.1999.2422 Google Scholar
[10] Robbins, D. P., Cubic Laurent series in characteristic 2 with bounded partial quotients. arxiv:math/9903092v1.Google Scholar
[11] Voloch, J. F., Diophantine approximation in positive characteristic. Period. Math. Hungar. 19 (1988), no. 3, 217225. http://dx.doi.org/10.1007/BF01850290 Google Scholar