No CrossRef data available.
Article contents
A Dynamical Proof of Pisot's Theorem
Published online by Cambridge University Press: 20 November 2018
Abstract
We give a geometric proof of classical results that characterize Pisot numbers as algebraic $\text{ }\lambda \,>1$ for which there is $x\ne 0$ with $\text{ }\lambda {{\text{ }}^{n}}x\to 0\left( \,\bmod \,\,1 \right)$ and identify such $x$ as members of $\mathbb{Z}\left[ \text{ }\lambda {{\text{ }}^{-1}} \right]\cdot$$\mathbb{Z}{{\left[ \text{ }\!\!\lambda\!\!\text{ } \right]}^{*}}$ where $\mathbb{Z}{{\left[ \text{ }\!\!\lambda\!\!\text{ } \right]}^{*}}$ is the dual module of $\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2006