Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T20:14:00.328Z Has data issue: false hasContentIssue false

Envelope Approach to Degenerate Complex Monge–Ampére Equations on Compact Kähler Manifolds

Published online by Cambridge University Press:  20 November 2018

Slimane Benelkourchi*
Affiliation:
Département de mathématiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, PK-5151, Montréal QC H3C 3P8 e-mail: benelkourchi.slimane@uqam.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the classical Perron envelope method to show a general existence theorem to degenerate complex Monge–Ampére type equations on compact Kähler manifolds.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Aubin, T., Equations du type Monge-Ampere sur les varietes kahleriennes compactes. C. R. Acad. Sci. Paris 283(1976), no. 3,119-121.Google Scholar
[2] Aubin, T., Equations du type Monge-Ampere sur les varietes kahleriennes compactes. Bull. Sci. Math. 102(1978), 6395. Google Scholar
[3] Bedford, E. and Taylor, B. A., A new capacity for plurisubharmonic functions. Acta Math. 149(1982), no. 1-2, 140. http://dx.doi.org/10.1007/BF02392348 Google Scholar
[4] Bedford, E. and Taylor, B. A., Fine topology, Silov boundary, and (ddc)n. J. Funct. Anal. 72(1987), no. 2, 225251. http://dx.doi.org/1 0.101 6/0022-1236(87)90087-5 Google Scholar
[5] Benelkourchi, S., Weak solutions to complex Monge-Ampere equations on compact Ka'hler manifolds. C. R. Math. Acad. Sci. Paris 352(2014), no. 7-8, 589592. http://dx.doi.org/1 0.101 6/j.crma.2O14.06.003 Google Scholar
[6] Benelkourchi, S., Weak solutions to the complex Monge-Ampere equation on hyperconvex domains. Ann. Polon. Math. 112(2014), no. 3, 239246. http://dx.doi.org/10.4064/ap112-3-3 Google Scholar
[7] Benelkourchi, S., V. Guedj, and A. Zeriahi, A priori estimates for weak solutions of complex Monge-Ampere equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(2008), 8196. Google Scholar
[8] Berman, R. J., S. Boucksom, V. Guedj, and A. Zeriahi, A variational approach to complex Monge-Ampere equations. Publ. Math. Inst. Hautes Etudes Sci. 117(2013), 179245. http://dx.doi.org/1 0.1007/s10240-012-0046-6 Google Scholar
[9] Boucksom, S., P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge-Ampere equations in big cohomology classes. Acta Math. 205(2010), no. 2,199-262. http://dx.doi.org/10.1007/s11511-010-0054-7 Google Scholar
[10] Cegrell, U., A general Dirichlet problem for of the complex Monge-Ampere operator. Ann. Polon. Math. 94(2008), no. 2, 131147. http://dx.doi.org/10.4064/ap94-2-3 Google Scholar
[11] Cegrell, U., The general definition of the complex Monge-Ampere operator. Ann. Inst. Fourier (Grenoble) 54(2004), no. 1, 159179. http://dx.doi.org/10.58O2/aif.2O14 Google Scholar
[12] Demailly, J.-P., Monge-Ampere operators, Lelong numbers and intersection theory. Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115193. Google Scholar
[13] Dinew, S., Uniqueness in E(X, 10). J. Funct. Anal. 256(2009), no. 7, 21132122. http://dx.doi.org/1 0.101 6/j.jfa.2 009.01.01 9 Google Scholar
[14] Eyssidieux, P., V. Guedj, and A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampere equations. Comm. Pure Appl. Math. 64(2011), no. 8,1059-1094. http://dx.doi.org/1 0.1002/cpa.20364 Google Scholar
[15] Guedj, V. and A. Zeriahi, The weighted Monge-Ampere energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2007), no. 2, 442482. http://dx.doi.org/10.1016/j.jfa.2007.04.018 Google Scholar
[16] Guedj, V., Intrinsic capacities on compact Kahler manifolds. J. Geom. Anal. 15(2005), no. 4, 607639. http://dx.doi.org/10.1007/BF02922247 Google Scholar
[17] Kolodziej, S., The complex Monge-Ampere equation and pluripotential theory. Mem. Amer. Math. Soc. 178(2005), no. 840. http://dx.doi.org/10.1090/memo/0840 Google Scholar
[18] Kolodziej, S., Weak solutions of equations of complex Monge-Ampere type. Ann. Polon. Math. 73(2000), no. 1, 5967. Google Scholar
[19] Lu, H. C., Solutions to degenerate complex Hessian equations. J. Math. Pures Appl. 100(2013), no. 6, 785805. http://dx.doi.org/10.1016/j.matpur.2013.03.002 Google Scholar
[20] Yau, S. T., On the Ricci curvature of a compact Ka'hler manifold and the complex Monge-Ampere equation. I. Comm. Pure Appl. Math. 31(1978), no. 3, 339411. http://dx.doi.org/10.1OO2/cpa.31 60310304 Google Scholar
[21] Zeriahi, A., A viscosity approach to degenerate complex Monge-Ampere equations. Ann. Fac. Sci. Toulouse Math. (6) 22(2013), no. 4, 843913. http://dx.doi.org/! O.58O2/afst.1390 Google Scholar