No CrossRef data available.
Article contents
Equivariant cobordisms between freely periodic knots
Published online by Cambridge University Press: 22 June 2022
Abstract
We consider free symmetries on cobordisms between knots, which is equivalent to cobordisms between knots in lens spaces. We classify which freely periodic knots bound equivariant surfaces in the 4-ball in terms of corresponding homology classes in lens spaces. We give a numerical condition determining the free periods for which torus knots bound equivariant surfaces in the 4-ball.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
References
Atiyah, M. F. and Bott, R.,
A Lefschetz fixed point formula for elliptic complexes. II. Applications
. Ann. Math. 88(1968), 451–491.CrossRefGoogle Scholar
Baker, K. and Etnyre, J.,
Rational linking and contact geometry
. In: Perspectives in analysis, geometry, and topology, Progress in Mathematics, 296, Birkhäuser/Springer, New York, 2012, pp. 19–37.CrossRefGoogle Scholar
Bonahon, F.,
Difféotopies des espaces lenticulaires
. Topology 22(1983), no. 3, 305–314.CrossRefGoogle Scholar
Boyle, K. and Issa, A., Equivariant 4-genera of strongly invertible and periodic knots. Preprint, 2021. https://arxiv.org/abs/2101.05413CrossRefGoogle Scholar
Boyle, K. and Issa, A., Equivariantly slicing strongly negative amphichiral knots. Preprint, 2021. https://arxiv.org/abs/2109.01198
Google Scholar
Brody, E. J.,
The topological classification of the lens spaces
. Ann. Math. 71(1960), 163–184.CrossRefGoogle Scholar
Cha, J. C. and Ko, K. H.,
On equivariant slice knots
. Proc. Amer. Math. Soc. 127(1999), no. 7, 2175–2182.CrossRefGoogle Scholar
Chbili, N.,
On the invariants of lens knots
. In: KNOTS’96 (Tokyo), World Scientific Publishing, River Edge, NJ, 1997, pp. 365–375.Google Scholar
Dai, I., Hedden, M., and Mallick, A.,
Corks, involutions, and Heegaard Floer homology
. J. Eur. Math. Soc.. Published online 21 May 2022.Google Scholar
Davis, J. F. and Naik, S.,
Alexander polynomials of equivariant slice and ribbon knots in S3
. Trans. Amer. Math. Soc. 358(2006), no. 7, 2949–2964.CrossRefGoogle Scholar
Doig, M. and Wehrli, S., A combinatorial proof of the homology cobordism classification of lens spaces. Preprint, 2015. https://arxiv.org/abs/1505.06970
Google Scholar
Kawauchi, A., A survey of knot theory, Birkhäuser, Basel, 1996, Translated and revised from the 1990 Japanese original by the author.Google Scholar
Meeks, W. H. III and Scott, P.,
Finite group actions on 3-manifolds
. Invent. Math. 86(1986), no. 2, 287–346.CrossRefGoogle Scholar
Naik, S.,
Equivariant concordance of knots in S3
. In: KNOTS’96 (Tokyo), World Scientific Publishing, River Edge, NJ, 1997, pp. 81–89.Google Scholar
Sakuma, M.,
On strongly invertible knots
. In: Algebraic and topological theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, pp. 176–196.Google Scholar
Schreier, O.,
Über die gruppen
${A}^a{B}^b=1$
. Abh. Math. Sem. Univ. Hamburg 3(1924), no. 1, 167–169.CrossRefGoogle Scholar

Smith, P. A.,
Fixed-point theorems for periodic transformations
. Amer. J. Math. 63(1941), 1–8.CrossRefGoogle Scholar