Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T19:58:28.686Z Has data issue: false hasContentIssue false

Functoriality of the Coniveau Filtration

Published online by Cambridge University Press:  20 November 2018

Donu Arapura
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A. e-mail: (Arapura) dvb@math.purdue.edu e-mail: (Kang) sjkang@math.purdue.edu
Su-Jeong Kang
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A. e-mail: (Arapura) dvb@math.purdue.edu e-mail: (Kang) sjkang@math.purdue.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that the coniveau filtration on the cohomology of smooth projective varieties is preserved up to shift by pushforwards, pullbacks and products.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[A] Arapura, D., Hodge cycles on some moduli spaces. preprint (2002)Google Scholar
[D] Deligne, P., Théorie de Hodge. III.. Inst. Hautes tudes Sci. Publ. Math. 44(1974), 577.Google Scholar
[F1] Fulton, W., Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer-Verlag, Berlin, 1984.Google Scholar
[GM] Goresky, M. and Macpherson, R., Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 14, Springer-Verlag, Berlin, 1988.Google Scholar
[G1] Grothendieck, A., Fondements de Géometrie Algébrique. Sminaire Bourbaki 7 , Soc. Math. France, Paris, pp. 297307.Google Scholar
[G2] Grothendieck, A., Hodge's general conjecture is false for trivial reasons. Topology 8(1969), 299303.Google Scholar
[I] Iversen, B., Cohomology of Sheaves. Springer-Verlag, Berlin, 1986.Google Scholar
[L] Lewis, J., A survey of the Hodge conjecture. Second edition. CRM Monograph Series 10. American Mathematical Society, Providence, RI, 1999.Google Scholar
[V] Verdier, J.-L., Classes d’homologie d’un cycle. In: Séminaire de géométrie anaytique, Astérisque 36-37, Soc. Math. France, Paris, 1976, pp. 101151.Google Scholar