Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T02:47:49.862Z Has data issue: false hasContentIssue false

Generalization of a Bracket Function Formula of L. Moser

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Problem P 60 L. Moser has proposed the formula

1

This can be expressed in the more elegant form

2

The formula has been given in the literature a number of times. For example, it was proved by Bouniakovsky [1].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1963

References

1. Bouniakovsky, V., Démonstration de quelques propositions relatives à la fonction numérique E(x), Art. 3ème Pétersbourg, Mélanges, p. 169-201. Cf. Jahrbuch Qber die Fortschritte der Mathematik, v. 16(1884), 150-151.Google Scholar
2. Moser, L., Problem P 60, Canadian Math. Bulletin, 5(1962), 310.Google Scholar
3. Zeller, Chr., Über Summen von grössten Ganzen bei arithmetischen Reihen, Gött, Nachr. 1879, 243-268.Google Scholar