Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:20:30.803Z Has data issue: false hasContentIssue false

Global Holomorphic Functions in Several Non-Commuting Variables II

Published online by Cambridge University Press:  20 November 2018

Jim Agler
Affiliation:
U.C. San Diego, La Jolla, California, USA, e-mail : jagler@ucsd.edu
John McCarthy
Affiliation:
Washington University, St. Louis, Missouri, USA, e-mail : mccarthy@wustl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a new proof that bounded non-commutative functions on polynomial polyhedra can be represented by a realization formula, a generalization of the transfer function realization formula for bounded analytic functions on the unit disk.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Agier, J. and McCarthy, J. E., Wandering Montel theorems for Hilbert Space valued holomorphic functions. Proc. Amer. Math. Soc. http://dx.doi.Org/10.1090/proc/14086Google Scholar
[2] Agier, J. and McCarthy, J. E., Global holomorphic functions in several non-commuting variables. Canad. J. Math. 67(2015), no. 2, 241285. http://dx.doi.org/10.4153/CJM-2014-024-1Google Scholar
[3] Agier, J. and McCarthy, J. E., Pick Interpolation for free holomorphic functions. Amer. J. Math. 137(2015), 16851701. http://dx.doi.org/10.1353/ajm.2015.0042Google Scholar
[4] Agier, J. and McCarthy, J. E., The implicit function theorem and free algebraic sets. Trans. Amer. Math. Soc. 368(2016), 31573175. http://dx.doi.Org/10.1090/tran/6546Google Scholar
[5] Balasubramanian, Sriram, Toeplitz corona and the Douglas property for free functions. J. Math. Anal. Appl. 428(2015), no. 1, 111. http://dx.doi.Org/10.1016/j.jmaa.2015.03.005Google Scholar
[6] Ball, J. A., Marx, G., and Vinnikov, V., Interpolation and transfer-function realization for the non-commutative Schur-Agler class. In: Operator theory: Advances and applications, 262, Springer, pp. 23116. http://dx.doi.org/10.1007/978-3-319-62527-0Google Scholar
[7] Ball, J. A., Marx, G., and Vinnikov, V., Noncommutative reproducing kernel Hilbert Spaces. J. Funct. Anal. 271(2016), no. 7, 18441920. http://dx.doi.Org/10.1016/j.jfa.2016.06.010Google Scholar
[8] Kaashoek, M. A. and Rovnyak, J., On the precedingpaper by R. B. Leech. Integral Equations Operator Theory, 78(2014), no. 1, 7577. http://dx.doi.org/10.1007/s00020-013-2108-7Google Scholar
[9] Kaliuzhnyi-Verbovetskyi, Dmitry S. and Vinnikov, Victor, Foundations offree non-commutative function theory. Mathematical Surveys and Monographs, 199. American Mathematical Society, Providence, RI, 2014. http://dx.doi.Org/10.1090/surv/199Google Scholar
[10] Leech, Robert B., Factorization of analytic functions and Operator inequalities. Integral Equations Operator Theory 78(2014), no. 1, 7173. http://dx.doi.Org/10.1007/s00020-013-2107-8Google Scholar
[11] Pascoe, J. E. and Tully-Doyle, R., Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables. J. Funct. Anal. 273(2017), 283328. http://dx.doi.Org/10.1016/j.jfa.2O17.04.001Google Scholar