Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T17:21:09.678Z Has data issue: false hasContentIssue false

Hankel Matrices Over Right Ordered Amenable Groups

Published online by Cambridge University Press:  20 November 2018

Ruy Exel*
Affiliation:
Departamento de Matemâtica IMEUSP Caixa Postal 20570 (Ag. Iguatemi) 01498 São Paulo SP Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend to amenable right ordered groups the theorems of Nehari and Hartman on Hankel matrices.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1990

References

1. Arveson, W., Interpolation problems in nest algebras, J. Funct. Analysis 20 (1975) 208233.Google Scholar
2. Arveson, W., Analyticity in operator algebras, Amer. J. Math. 89 (1967) 578642.Google Scholar
3. Dixmier, J., C-algebras, North Holland (1982).Google Scholar
4. Exel, R., Maximal subdiagonal algebras, Amer. J. Math., 110 (1988) 775782.Google Scholar
5. Eymard, P., U Algebra de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964) 181236.Google Scholar
6. Greenleaf, F. P., Invariant means on topological groups, Mathematical studies No. 16, van Nostrand- Reinhold (1969).Google Scholar
7. Hartman, P., On completely continuous Hankel matrices, Proc. Amer. Math. Soc, 9 (1958) 862866.Google Scholar
8. Nehari, Z., On bounded bilinear forms, Ann. of Math. 65 (1957) 153162.Google Scholar
9. Parrott, S., On a quotient norm and the Sz.-Nagy-Foias Lifting Theorem, J. Funct. Analysis, 30 (1978) 311328.Google Scholar
10. Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press (1979).Google Scholar
11. Power, S. C., Hankel operators on Hilbert space, Bull. London Math. Soc. 12 (1980) 422442.Google Scholar
12. Sarason, D., Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973) 286299.Google Scholar
13. Toepliz, O., Zur théorie der quadratischen Formen von unendlich vielen Veränderlichen, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. (1910) 489-506.Google Scholar
14. Zalcman, L., Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969) 241269.Google Scholar