No CrossRef data available.
Article contents
Hartogs’ Theorem on Separate Holomorphicity for Projective Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
If a mapping of several complex variables into projective space is holomorphic in each pair of variables, then it is globally holomorphic.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2009
References
[1] Alexander, H., Taylor, B. A., and Ullman, J. L., Areas of projections of analytic sets. Invent. Math.
16(1972), 335–341.Google Scholar
[2] Dloussky, G., Analyticité séparée et prolongement analytique. Math. Ann.
286(1990), no. 1-3, 153–168.Google Scholar
[3] Hartogs, F., Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten. Math. Ann
62(1906), no. 1, 1–88.Google Scholar
[4] Hai, Le Mau and Khue, Nguyen Van, Hartogs spaces, spaces having the Forelli property and Hartogs holomorphic extension spaces. Vietnam J. Math.
33(2005), no. 1, pp. 43–53.Google Scholar
[5] Shiffman, B., Hartogs theorems for separately holomorphic mappings into complex spaces. C. R. Acad. Sci. Paris Sér. I Math.
310(1990), no. 3, 89–94.Google Scholar
[6] Shiffman, B., Separately meromorphic functions and separately holomorphic mappings. In: Several Complex Variables and Complex Geometry. Proc. Sympos. Pure Math. 52, American Mathematical Society, Providence, RI, 1991, pp. 191–198.Google Scholar
You have
Access