Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T15:23:48.340Z Has data issue: false hasContentIssue false

The Lang–Weil Estimate for Cubic Hypersurfaces

Published online by Cambridge University Press:  20 November 2018

T. D. Browning*
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom e-mail: t.d.browning@bristol.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An improved estimate is provided for the number of ${{\text{F}}_{q}}$-rational points on a geometrically irreducible, projective, cubic hypersurface that is not equal to a cone.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Bombieri, E., On exponential sums in finite fields. II. Invent. Math. 47 (1978, no. 1, 2939. http://dx.doi.org/10.1007/BF01609477 Google Scholar
[2] Bruce, J.W. and Wall, C. T. C., On the classification of cubic surfaces. J. London Math. Soc. 19 (1979, no. 2, 245256. http://dx.doi.org/10.1112/jlms/s2-19.2.245 Google Scholar
[3] Coray, D. F. and Tsfasman, M. A., Arithmetic on singular Del Pezzo surfaces. Proc. London Math. Soc. 57 (1988, no. 1, 2587. http://dx.doi.org/10.1112/plms/s3-57.1.25 Google Scholar
[4] Davenport, H. and Lewis, D. J., Exponential sums in many variables. Amer. J. Math. 84 (1962, 649665. http://dx.doi.org/10.2307/2372871 Google Scholar
[5] Davenport, H. and Lewis, D. J., Notes on congruences. II. Quart. J. Math. Oxford Ser. (2) 14 (1963, 153159. http://dx.doi.org/10.1093/qmath/14.1.153 Google Scholar
[6] Deligne, P., La conjecture de Weil. II. Inst. Hautes E´ tudes Sci. Publ. Math. 52 (1980, 137252.Google Scholar
[7] Hooley, C., On the number of points on a complete intersection over a finite field. J. Number Theory 38 (1991, no. 3, 338358. http://dx.doi.org/10.1016/0022-314X(91)90023-5 Google Scholar
[8] Lang, S. and Weil, A., Number of points of varieties in finite fields. Amer. J. Math. 76 (1954, 819827. http://dx.doi.org/10.2307/2372655 Google Scholar
[9] Swinnerton-Dyer, H. P. F., The zeta function of a cubic surface over a finite field. Proc. Cambridge Philos. Soc. 63 (1967, 5571. http://dx.doi.org/10.1017/S0305004100040895 Google Scholar