Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T13:17:36.820Z Has data issue: false hasContentIssue false

Lie Superalgebras Graded by the Root Systems C(n), D(m, n), D(2, 1, α), F(4), G(3)

Published online by Cambridge University Press:  20 November 2018

Georgia Benkart
Affiliation:
Department of Mathematics University of Wisconsin Madison, Wisconsin 53706 USA, e-mail: benkart@math.wisc.edu
Alberto Elduque
Affiliation:
Departamento de Matemáticas Universidad de Zaragoza 50009 Zaragoza Spain, e-mail: elduque@posta.unizar.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the Lie superalgebras that are graded by the root systems of the basic classical simple Lie superalgebras of type $C\left( n \right),D\left( m,n \right),D\left( 2,1;\alpha \right)\left( \alpha \in \mathbb{F}\backslash \left\{ 0,-1 \right\} \right),F(4)$, and $G(3)$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2002

References

[AABGP] Allison, B. N., Azam, S., Berman, S., Gao, Y. and Pianzola, A., Extended Affine Lie Algebras and Their Root Systems. Mem. Amer.Math. Soc. (126) 603(1997).Google Scholar
[ABG1] Allison, B. N., Benkart, G., Gao, Y., Central extensions of Lie algebras graded by finite root systems. Math. Ann. 316 (2000), 499527.Google Scholar
[ABG2] Allison, B. N., Benkart, G. and Gao, Y., Lie Algebras Graded by the Root Systems BCr , r ≥ 2. Mem. Amer.Math. Soc. (158) 751 Providence, R.I., 2002.Google Scholar
[BE1] Benkart, G. and Elduque, A., Lie superalgebras graded by the root system B(m, n). Submitted, Jordan preprint archive: http://mathematik.uibk.ac.at/jordan/ (paper 108).Google Scholar
[BE2] Benkart, G. and Elduque, A., Lie superalgebras graded by the root system A(m, n). Submitted, Jordan preprint archive: http://mathematik.uibk.ac.at/jordan/ (paper 124).Google Scholar
[BS] Benkart, G. and Smirnov, O., Lie algebras graded by the root system BC1 . J. Lie Theory, to appear.Google Scholar
[BZ] Benkart, G. and Zelmanov, E., Lie algebras graded by finite root systems and intersection matrix algebras. Invent.Math. 126 (1996), 145.Google Scholar
[BM] Berman, S. and Moody, R. V., Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent.Math. 108 (1992), 323347.Google Scholar
[B] Bourbaki, N., Groupes et Algèbres de Lie. Élements de Mathématique XXXIV, Hermann, Paris, 1968.Google Scholar
[GN] García, E. and Neher, E., Jordan superpairs covered by grids and their Tits-Kantor-Koecher superalgebras. preprint, 2001.Google Scholar
[IK] Iohara, K. and Koga, Y., Central extensions of Lie superalgebras. Comment. Math. Helv. 76 (2001), 110154.Google Scholar
[K1] Kac, V. G., Lie superalgebras. Adv. in Math. 26 (1977), 896.Google Scholar
[K2] Kac, V. G., Representations of classical superalgebras. Differential and Geometrical Methods in Math. Physics II, Lecture Notes in Math. 676, Springer-Verlag, Berlin, Heidelberg, New York, 1978, 599626.Google Scholar
[LS] Lee Shader, C., Typical representations for orthosymplectic Lie superalgebras. Comm. Algebra 28 (2000), 387400.Google Scholar
[N] Neher, E., Lie algebras graded by 3-graded root systems. Amer. J. Math. 118 (1996), 439491.Google Scholar
[S] Slodowy, P., Beyond Kac-Moody algebras and inside. Lie Algebras and Related Topics, Canad. Math. Soc. Conf. Proc. 5, (eds., Britten, Lemire, Moody), 1986, 361371.Google Scholar