Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:32:10.887Z Has data issue: false hasContentIssue false

Limit Cycles of a Perturbation of a Polynomial Hamiltonian Systems of Degree 4 Symmetric with Respect to the Origin

Published online by Cambridge University Press:  18 October 2019

Jaume Llibre
Affiliation:
Departament de Matemàtiques, Facultat de Ciències Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain Email: jllibre@mat.uab.cat
Paulina Martínez
Affiliation:
Departamento de Matemática, Facultad de Ciencias, Universidad de Bío-Bío, Casilla 5–C, Concepción, VIII–Región, Chile Email: yohanna.martinez@uab.cat
Claudio Vidal
Affiliation:
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad de Bío-Bío, Casilla 5–C, Concepción, VIII–región, Chile Email: clvidal@ubiobio.cl

Abstract

We study the number of limit cycles bifurcating from the origin of a Hamiltonian system of degree 4. We prove, using the averaging theory of order 7, that there are quartic polynomial systems close these Hamiltonian systems having 3 limit cycles.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author J. L. is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911; Y. P. M. was supported by a CONICYT fellowship (Chile); C. V. was partially supported by CONICYT (Chile) through FONDECYT project 1130644.

References

Berezin, I. S. and Zhidkov, N. P., Computing methods, volume II. Pergamon Press, Oxford, 1964.Google Scholar
Buica, A. and Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree. Bulletin des Sciences Mathemàtiques 128(2004), 722.10.1016/j.bulsci.2003.09.002CrossRefGoogle Scholar
Browder, F., Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9(1983), 139.CrossRefGoogle Scholar
de Bustos, M. T., Guirao, J. L. G., Llibre, J., and Vera, J. A., New families of periodic orbits for a galactic potential. Chaos, Solitons and Fractals 82(2016), 97102.10.1016/j.chaos.2015.11.003CrossRefGoogle Scholar
Colak, I., Llibre, J., and Valls, C., Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields. J. Differential Equations 257(2014), 16231661.CrossRefGoogle Scholar
Dulac, H., Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre. Bull. Sci. Math. Sér. (2) 32(1908), 230252.Google Scholar
Freire, E., Gasull, A., and Guillamon, A., A characterization of isochronous centres in terms of symmetries. Rev. Mat. Iberoamericana 20(2004), 205222.CrossRefGoogle Scholar
García, B., Llibre, J., and Pérez del Río, J. S., Limit cycles of generalized Liénard polynomial differential systems via averaging theory. Chaos, Fractals and Solitons 62–63(2014), 19.CrossRefGoogle Scholar
Giné, J., Grau, M., and Llibre, J., Averaging theory at any order for computing periodic orbits. Physica D 250(2013), 5865.Google Scholar
González-Olivares, E., Rojas-Palma, A., and González-Yañez, B., Multiple limit cycles in a Leslie–Gower-type predator-prey model considering weak Allee effect on prey. Nonlinear Anal. Model. Control 22(2017), 347365.10.15388/NA.2017.3.5CrossRefGoogle Scholar
Han, M., On the maximum number of periodic solution of piecewise smooth periodic equations by average method. J. Appl. Anal. Computation 7(2017), 788794.Google Scholar
Han, M., Sun, H., and Balanov, Z., Upper estimates for the number of periodic solutions to multi-dimensional systems. J. Differential Equations. https://doi.org/10.1016/j.jde.2018.12.034Google Scholar
Itikawa, J. and Llibre, J., Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers. J. Comp. Appl. Math. 277(2014), 171191.Google Scholar
Itikawa, J., Llibre, J., and Novaes, D. D., A new result on averaging theory for a class of discontinuous planar differential systems with applications. Rev. Mat. Iberoamericana 33(2017), 12471265.10.4171/RMI/970CrossRefGoogle Scholar
Llibre, J. and Makhlouf, A., Zero–Hopf bifurcation in the generalized Michelson system. Chaos, Solitons and Fractals 89(2016), 228231.CrossRefGoogle Scholar
Llibre, J., Martínez, P., and Vidal, C., Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems-Series B 23(2018), 887912.CrossRefGoogle Scholar
Llibre, J., Novaes, D. D., and Teixeira, M. A., Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27(2014), 563583.10.1088/0951-7715/27/3/563Google Scholar
Llibre, J., Novaes, D. D., and Teixeira, M. A., Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27(2014), 2417.CrossRefGoogle Scholar
Lloyd, N. G., Degree theory. Cambridge University Press, 1978.Google Scholar
Poincaré, H., Mémoire sur les courbes définies par les équations différentielles. J. Mathématiques 37 1881, 375422. Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, 3–84.Google Scholar
Sanders, J. A., Lloyd, N. G., and Pearson, J. M., Averaging methods in nonlinear dynamical systems, second ed., Appl. Math. Sci. 59, Springer, New York, 2007.Google Scholar
Verhulst, F., Nonlinear differential equations and dynamical systems. Universitext, Springer, 1991.Google Scholar
Zamora, M., A note on the periodic solutions of a Mathieu–Duffing type equation. Math. Nachr. 290(2017), 11131118.CrossRefGoogle Scholar