Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T17:39:02.113Z Has data issue: false hasContentIssue false

The Local Class Group of a Krull Domain

Published online by Cambridge University Press:  20 November 2018

A. Bouvier*
Affiliation:
Department de Mathématiques, Université Claude Bernard Lyon 143, Boulevard du 11 Novembre 1918 69621 Villeurbanne, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The local class group of a Krull domain A is the quotient group G(A) = CI(A)/Pic(A). A Krull domain A is locally factorial if and only if G(A) = 0. In this paper, we characterize the Krull domains for which G(A) is a torsion group. We evaluate the local class group of several examples and finally, we explain why every abelian group is the local class group of a Krull domain.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1983

References

1. Anderson, D. D., Some remarks on the ring R(x). Commun. Math. Univ S1 . Pauli XXVI 2 (1977) 137-140.Google Scholar
2. Anderson, D. D., π-domains, overrings and divisorial ideals. Glasgow Math J 19 (1978) 199-203.Google Scholar
3. Anderson, D. F., Graded Krull domains. Commun, in algebra 7 (1) (1979) 79-106.Google Scholar
4. Anderson, D. F., The divisor class group of a semigroup ring. Commun, in algebra 8 (5) (1980) 467-476.Google Scholar
5. Anderson, D. D. and Anderson, D. F., Divisibility properties of graded Krull domains. Canad. Math. J. (to appear).Google Scholar
6. Beltrametti, M. C., and Odetti, F. L., On the projectively almost-factorial varieties. Ann. Math. Pura Applicata 113 (1977) 255-263.Google Scholar
7. Bourbaki, N., Algèbre commutative. Chap 7 Hermann Paris.Google Scholar
8. Bouvier, A., Survey of locally factorial Krull domains Pub. Dept. Math Lyon 17-1 (1980).Google Scholar
9. Chouinard, L. G., Krull semigroups and divisor class groups (to appear).Google Scholar
10. Fossum, R. M., The divisor class group of a Krull domain Springer, Berlin 1973.Google Scholar
11. Gilmer, R., Multiplicative ideal theory, Marcel Dekker 1972.Google Scholar
12. Maroscia, P., A note on locally factorial noetherian domains, Commun, in Algebra 9 (5) (1981), 491-497.Google Scholar
13. Matsuda, R., Torsion-free abelian semigroup rings IV Bull. Fac. Sci. Ibaraki Univ. Math. 10 (1978) 1-27.Google Scholar
14. Northcott, D. G., Lessons on rings, modules and multiplicities Camb. Univ. Press 1968.Google Scholar
15. Storch, U., Fastfaktorielle Rings Schriftenreihe, Math. Instit. Univ. Munster, Heft 36 1967.Google Scholar