Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-11-28T20:45:25.703Z Has data issue: false hasContentIssue false

Localization operators on discrete Orlicz modulation spaces

Published online by Cambridge University Press:  14 November 2025

Aparajita Dasgupta
Affiliation:
Indian Institute of Technology, Delhi , India e-mail: adasgupta@maths.iitd.ac.in
Anirudha Poria*
Affiliation:
Xi’an Jiaotong–Liverpool University , China

Abstract

In this article, we introduce Orlicz spaces on $ \mathbb Z^n \times \mathbb T^n $ and Orlicz modulation spaces on $\mathbb Z^n$, and study inclusion relations, convolution relations, and duality of these spaces. We show that the Orlicz modulation space $M^{\Phi }(\mathbb Z^n)$ is close to the modulation space $M^{2}(\mathbb Z^n)$ for some particular Young function $\Phi $. Then, we study localization operators on $\mathbb Z^n$. In particular, using appropriate classes for symbols, we prove that these operators are bounded on Orlicz modulation spaces on $\mathbb Z^n$, compact and in the Schatten–von Neumann classes.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The second author is partially supported by the XJTLU Research Development Fund (RDF-23-01-027).

References

Bastianoni, F. and Cordero, E., Quasi-Banach modulation spaces and localization operators on locally compact abelian groups . Banach J. Math. Anal. 16(2022), no. 4, Article no. 52, 71 pp.10.1007/s43037-022-00205-6CrossRefGoogle Scholar
Berezin, F. A., Wick and anti-Wick operator symbols . Math. USSR Sb. 15(1971), no. 4, 577606.10.1070/SM1971v015n04ABEH001564CrossRefGoogle Scholar
Boggiatto, P. and Wong, M. W., Two-wavelet localization operators on ${L}^p({\mathbb{R}}^d)$ for the Weyl-Heisenberg group . Integr. Equ. Oper. Theory. 49(2004), 110.10.1007/s00020-002-1200-1CrossRefGoogle Scholar
Botchway, L. N. A., Chatzakou, M., and Ruzhansky, M., Semi-classical pseudo-differential operators on $\hslash {\mathbb{Z}}^n$ and applications . J. Fourier Anal. Appl. 30(2024), Article no. 41, 46 pp.10.1007/s00041-024-10091-1CrossRefGoogle Scholar
Botchway, L. N. A., Kabiti, P. G., and Ruzhansky, M., Difference equations and pseudo-differential operators on ${\mathbb{Z}}^n$ . J. Funct. Anal. 278(2020), no. 11, 108473.10.1016/j.jfa.2020.108473CrossRefGoogle Scholar
Cordero, E. and Gröchenig, K., Time-frequency analysis of localization operators . J. Funct. Anal. 205(2003), no. 1, 107131.10.1016/S0022-1236(03)00166-6CrossRefGoogle Scholar
Córdoba, A. and Fefferman, C., Wave packets and Fourier integral operators . Commun. Partial Differ. Equ. 3(1978), no. 11, 9791005.10.1080/03605307808820083CrossRefGoogle Scholar
Dasgupta, A. and Poria, A., Localization operators on discrete modulation spaces . Banach J. Math. Anal. 17(2023), no. 3, Article no. 59, 28 pp.10.1007/s43037-023-00286-xCrossRefGoogle Scholar
Daubechies, I., Time-frequency localization operators: A geometric phase space approach . IEEE Trans. Inf. Theory 34(1988), no. 4, 605612.10.1109/18.9761CrossRefGoogle Scholar
Daubechies, I., The wavelet transform, time-frequency localization and signal analysis . IEEE Trans. Inf. Theory 36(1990), no. 5, 9611005.10.1109/18.57199CrossRefGoogle Scholar
Daubechies, I. and Paul, T., Time-frequency localisation operators—A geometric phase space approach: II. The use of dilations . Inverse Probl. 4(1988), no. 3, 661680.10.1088/0266-5611/4/3/009CrossRefGoogle Scholar
De Mari, F., Feichtinger, H. G., and Nowak, K., Uniform eigenvalue estimates for time-frequency localization operators . J. Lond. Math. Soc. 65(2002), no. 3, 720732.CrossRefGoogle Scholar
De Mari, F. and Nowak, K., Localization type Berezin–Toeplitz operators on bounded symmetric domains . J. Geom. Anal. 12(1) (2002), 927.10.1007/BF02930858CrossRefGoogle Scholar
Feichtinger, H. G., Modulation spaces on locally compact abelian groups . In: Krishna, M., Radha, R., and Thangavelu, S. (eds.), Wavelets and their applications, Allied Publishers, New Delhi, 2003, pp. 156.Google Scholar
Feichtinger, H. G. and Gröchenig, K., Gabor frames and time–frequency analysis of distributions . J. Funct. Anal. 146(1997), no. 2, 464495.10.1006/jfan.1996.3078CrossRefGoogle Scholar
Feichtinger, H. G. and Nowak, K., A first survey of Gabor multipliers . In: Feichtinger, H. G., and Strohmer, T. (eds.), Advances in Gabor analysis, Birkhäuser, Boston, MA, 2002.Google Scholar
Folland, G. B., Introduction to partial differential equations. 2nd ed., Princeton University Press, Princeton, NJ, 1995.Google Scholar
Gröchenig, K., Foundations of time–frequency analysis. Birkhäuser, Boston, 2001.10.1007/978-1-4612-0003-1CrossRefGoogle Scholar
Gumber, A., Rana, N., Toft, J., and Üster, R., Pseudo-differential calculi and entropy estimates with Orlicz modulation spaces . J. Funct. Anal. 286(2024), no. 3, 110225.CrossRefGoogle Scholar
Liu, Y. and Wong, M. W., Polar wavelet transforms and localization operators . Integr. Equ. Oper. Theory 58(2007), 99110.10.1007/s00020-007-1497-xCrossRefGoogle Scholar
Maligranda, L. and Mastylo, M., Inclusion mappings between Orlicz sequence spaces . J. Funct. Anal. 176(2000), no. 2, 264279.10.1006/jfan.2000.3624CrossRefGoogle Scholar
Molahajloo, S. and Wong, M. W., Discrete analogs of Wigner transforms and Weyl transforms . In: Analysis of pseudo-differential operators, Trends in Mathematics, Birkhäuser, Cham, 2019, pp. 120.CrossRefGoogle Scholar
Ramanathan, J. and Topiwala, P., Time-frequency localization via the Weyl correspondence . SIAM J. Math. Anal. 24(1993), no. 5, 13781393.10.1137/0524080CrossRefGoogle Scholar
Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Marcel Dekker Inc., New York, NY, 1991.Google Scholar
Schnackers, C. and Führ, H., Orlicz modulation spaces . In: Proceedings of the 10th international conference on sampling theory and applications, 2013, pp. 432435.Google Scholar
Stein, E. M., Interpolation of linear operators . Trans. Am. Math. Soc. 83(1956), 482492.10.1090/S0002-9947-1956-0082586-0CrossRefGoogle Scholar
Toft, J., Üster, R., Nabizadeh, E., and Öztop, S., Continuity and Bargmann mapping properties of quasi-Banach Orlicz modulation spaces . Forum Math. 34(2022), no. 5, 12051232.Google Scholar
Wong, M. W., Localization operators, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1999.Google Scholar
Wong, M. W., Localization operators on the Weyl-Heisenberg group . In: Pathak, R. S. (ed.), Geometry, analysis and applications, World-Scientific, River Edge, NJ, 2001, pp. 303314.Google Scholar
Wong, M. W., Wavelet transforms and localization operators, Operator Theory: Advances and Applications, 136, Birkhäuser, Basel, 2002.10.1007/978-3-0348-8217-0CrossRefGoogle Scholar
Wong, M. W., ${L}^p$ boundedness of localization operators associated to left regular representations . Proc. Am. Math. Soc. 130(2002), no. 10, 29112919.CrossRefGoogle Scholar
Wong, M. W., Localization operators on the affine group and paracommutators, Progress in Analysis, World Scientific, River Edge, NJ, 2003, pp. 663669.Google Scholar