Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T04:04:15.418Z Has data issue: false hasContentIssue false

Marcinkiewicz Commutators with Lipschitz Functions in Non-homogeneous Spaces

Published online by Cambridge University Press:  20 November 2018

Jiang Zhou
Affiliation:
College of Mathematics and Econometrics, Hunan University, ChangSha, 410082, P.R. ChinaandCollege of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, P.R. Chinae-mail: zhoujiangshuxue@126.com
Bolin Ma
Affiliation:
College of Mathematics and Econometrics, Hunan University, ChangSha, 410082, P.R. ChinaandCollege of Mathematics and Engineering, Jiaxing University, Jiaxing, 314001, P.R. Chinae-mail: blma3030@yahoo.com.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Under the assumption that $\mu $ is a nondoubling measure, we study certain commutators generated by the Lipschitz function and the Marcinkiewicz integral whose kernel satisfies a Hörmander-type condition. We establish the boundedness of these commutators on the Lebesgue spaces, Lipschitz spaces, and Hardy spaces. Our results are extensions of known theorems in the doubling case.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Al-Salman, A., Al-Qassem, H., Cheng, L. C., and Pan, Y., Lp bounds for the function of Marcinkiewicz. Math. Res. Lett. 9(2002), no. 5-6, 697700.Google Scholar
[2] Ding, Y., Lu, S., and Xue, Q., Marcinkiewicz integral on Hardy spaces. Integral Equations Operator Theory, 42(2002), no. 2, 174182. http://dx.doi.org/10.1007/BF01275514 Google Scholar
[3] Ding, Y., Lu, S., and Zhang, P., Weighted weak type estimates for commutators of the Marcinkiewicz integrals. Sci. China Ser. A., 47(2004), no. 1, 8395. http://dx.doi.org/10.1360/03ys0084 Google Scholar
[4] Fan, D. and Sato, S.,Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels. Tohoku Math. J. 53(2001), no. 2, 265284. http://dx.doi.org/10.2748/tmj/1178207481 Google Scholar
[5] García-Cuerva, J. and Gatto, A. E., Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162(2004), no. 3, 245261 http://dx.doi.org/10.4064/sm162-3-5 Google Scholar
[6] García-Cuerva, J. and Gatto, A. E., Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures. Publ. Mat. 49(2005), no. 2, 285296.Google Scholar
[7] Hu, G., Meng, Y., and Yang, D., Multilinear commutators of singular integrals with non doubling measure. Integral Equations Operator Theory 51(2005), no. 2, 235255. http://dx.doi.org/10.1007/s00020-003-1251-y Google Scholar
[8] Hu, G. and Yan, D., On the commutator of the Marcinkiewicz integral. J. Math. Anal. Appl. 283(2003), no. 2, 351361 (2003) http://dx.doi.org/10.1016/S0022-247X(02)00498-5 Google Scholar
[9] Hu, G., Lin, H., and Yang, D., Marcinkiewicz integrals with non-doubling measures. Integral Equations Operator Theory, 58(2007), no. 2, 205238, http://dx.doi.org/10.1007/s00020-007-1481-5 Google Scholar
[10] Li, L. and Jiang, Y.-S., Estimates for maximal multilinear commutators on non-homogeneous spaces. J. Math. Anal. Appl. 355(2009), no. 1, 243257. http://dx.doi.org/10.1016/j.jmaa.2009.01.022 Google Scholar
[11] Lorente, M., Riveros, M. S., and de la Torre, A., Weighted estimates for singular integral operators satisfying Hörmander's conditions of Young type. J. Fourier Anal. Appl. 11(2005), no. 5, 497509. http://dx.doi.org/10.1007/s00041-005-4039-4 Google Scholar
[12] Lu, S., Ding, Y., and Yan, D., Singular Integral and Related Topics. World Scientific Publishing Company, Hackensak, NJ, 2007.Google Scholar
[13] Marcinkiewicz, J., Sur quelques intégrales du type de Dini. Ann. Soc. Polon. Math. 17(1938), 4250.Google Scholar
[14] Meng, Y. and Yang, D., Boundedness of commutators with Lipschitz functions in non-homogeneous spaces. Taiwanese J Math. 10(2006), no. 6, 14431464.Google Scholar
[15] Mo, H. and Lu, S., Boundedness of generalized higher commutators of Marcinkiewicz integrals. Acta Math. Sci. Ser. B Engl. Ed. 27(2007) no. 4, 852866.Google Scholar
[16] Sakamoto, N. and Yabuta, K., Boundedness of Marcinkiewicz functions. Studia. Math. 135(1999), no. 2, 103142.Google Scholar
[17] Stein, E. M., On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz. Trans. Amer. Math. Soc. 88(1958), 430466. http://dx.doi.org/10.1090/S0002-9947-1958-0112932-2 Google Scholar
[18] Torchinsky, A. and Wang, S., A note on the Marcinkiewicz integral. Colloq. Math., 60/61(1990), no. 1, 235243.Google Scholar
[19] Tolsa, X., BMO, H 1 and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319(2001), no. 1, 89149. http://dx.doi.org/10.1007/PL00004432 Google Scholar
[20] Tolsa, X., The space H 1 for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc. 355(2003), no. 1, 315348. http://dx.doi.org/10.1090/S0002-9947-02-03131-8 Google Scholar
[21] Tolsa, X., Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv. Math. 164(2001), no. 1, 57116. http://dx.doi.org/10.1006/aima.2001.2011 Google Scholar
[22] Tolsa, X., Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190(2003), no. 1, 105149. http://dx.doi.org/10.1007/BF02393237 Google Scholar
[23] Wu, H., On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory 52(2005), no. 2, 285298. http://dx.doi.org/10.1007/s00020-004-1339-z Google Scholar