Published online by Cambridge University Press: 20 November 2018
Let
be the Hurwitz zeta function and let
where $\alpha ,\beta >1$ and $a,b>0$ are real numbers. We prove: (i) The function $Q$ is decreasing on $\left( 0,\infty \right)$ iff $\alpha a-\beta b\ge \max \left( a-b,0 \right)$. (ii) $Q$ is increasing on $\left( 0,\infty \right)$ iff $\alpha a-\beta b\le \min \left( a-b,0 \right)$. An application of part (i) reveals that for all $x>0$ the function $s\mapsto {{\left[ \left( s-1 \right)\zeta \left( s,x \right) \right]}^{1/\left( s-1 \right)}}$ is decreasing on $\left( 1,\infty \right)$. This settles a conjecture of Bastien and Rogalski.