Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:10:30.144Z Has data issue: false hasContentIssue false

A multiplicative dual of nil-clean rings

Published online by Cambridge University Press:  09 February 2021

Yiqiang Zhou*
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NLA1C 5S7, Canada
*
e-mail: zhou@mun.ca

Abstract

The goal of this note is to completely determine the rings for which every nonunit is a product of a nilpotent and an idempotent (in either order).

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breaz, S., Cǎlugǎreanu, G., Danchev, P., and Micu, T., Nil-clean matrix rings. Linear Algebra Appl. 439(2013), 31153119.CrossRefGoogle Scholar
Cǎlugǎreanu, G., UN-rings. J. Algebra Appl. 15(2016), 1650182, 9 pp.10.1142/S0219498816501826CrossRefGoogle Scholar
Cǎlugǎreanu, G. and Lam, T. Y., Fine rings: a new class of simple rings. J. Algebra Appl. 15(2016), 1650173, 18 pp.10.1142/S0219498816501735CrossRefGoogle Scholar
Chen, J., Yang, X., and Zhou, Y., On strongly clean matrix and triangular matrix rings. Comm. Algebra 34(2006), 36593674.10.1080/00927870600860791CrossRefGoogle Scholar
Diesl, A. J., Nil clean rings. J. Algebra 383(2013), 197211.10.1016/j.jalgebra.2013.02.020CrossRefGoogle Scholar
Kosan, M. T., Lee, T. -K., and Zhou, Y., When is every matrix over a division ring a sum of an idempotent and a nilpotent? Linear Algebra Appl. 450(2014), 712.10.1016/j.laa.2014.02.047CrossRefGoogle Scholar
Kosan, T., Wang, Z., and Zhou, Y., Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220(2016), 633646.10.1016/j.jpaa.2015.07.009CrossRefGoogle Scholar
Matczuk, J., Conjugate (nil) clean rings and Köthe’s problem. J. Algebra Appl. 16(2017), 1750073, 14 pp.10.1142/S0219498817500736CrossRefGoogle Scholar
McGovern, W. W., Raja, S., and Sharp, A., Commutative nil clean group rings. J. Algebra Appl. 14(2015), 1550094, 5 pp.10.1142/S0219498815500942CrossRefGoogle Scholar
Nicholson, W. K., Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229(1977), 269278.10.1090/S0002-9947-1977-0439876-2CrossRefGoogle Scholar
Robson, J. C., Recognition of matrix rings. Comm. Algebra 19(1991), 21132124.10.1080/00927879108824248CrossRefGoogle Scholar
Sahinkaya, S., Tang, G., and Zhou, Y., Nil-clean group rings. J. Algebra Appl. 16(2017), 1750135, 7 pp.10.1142/S0219498817501353CrossRefGoogle Scholar