Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:12:05.212Z Has data issue: false hasContentIssue false

Nearly invariant Brangesian subspaces

Published online by Cambridge University Press:  07 January 2025

Arshad Khan
Affiliation:
Department of Mathematics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India e-mail: ak954@snu.edu.in
Sneh Lata*
Affiliation:
Department of Mathematics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India e-mail: ak954@snu.edu.in
Dinesh Singh
Affiliation:
Centre for Digital Sciences, O. P. Jindal Global University, Sonipat, Haryana, 131001, India e-mail: dineshsingh1@gmail.com

Abstract

This article describes Hilbert spaces contractively contained in certain reproducing kernel Hilbert spaces of analytic functions on the open unit disc which are nearly invariant under division by an inner function. We extend Hitt’s theorem on nearly invariant subspaces of the backward shift operator on $H^2(\mathbb {D})$ as well as its many generalizations to the setting of de Branges spaces.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleman, A., Baranov, A., Belov, Y., and Hedenmalm, H., Backward shift and nearly invariant subspaces of Fock-type spaces . Int. Math. Res. Not. IMRN 2022(2020), 73907419.CrossRefGoogle Scholar
Aleman, A., Feldman, N., Ross, W., The Hardy space of a slit domain, Frontiers in Mathematics. Birkh $\ddot{a}$ user, Verlag, Basel, 2009.CrossRefGoogle Scholar
de Branges, L. and Rovnyak, J., Square summable power series, Holt, Rinehart and Winston, New York-Toronto-London, 1966.Google Scholar
Chalendar, I., Chevrot, N., and Partington, J, Nearly invariant subspaces for backwards shifts on vector-valued Hardy spaces . J. Operator Theory 63(2010), 403415.Google Scholar
Chalendar, I., Gallardo-Gutiérrez, E., and Partington, J., A Beurling Theorem for almost-invariant subspaces of the shift operator . J. Operator Theory 83(2020), 321331.CrossRefGoogle Scholar
Chattopadhyay, A. and Das, S., Study of nearly invariant subspaces with finite defect in Hilbert spaces . Proc. Indian Acad. Sci. Math. Sci. 132(2022), no. 1, Paper No. 10, 26 pp.CrossRefGoogle Scholar
Chattopadhyay, A., Das, S., and Pradhan, C, Almost invariant subspaces of the shift operator on vector-valued Hardy spaces . Int. Eq. Operat. Theory 92(2020), 115.Google Scholar
Chevrot, N., Kernel of vector-valued Toeplitz operators . Int. Eq. Operat. Theory 67(2010), 5778.CrossRefGoogle Scholar
Erard, C., Nearly invariant subspaces related to multiplication operators in Hilbert spaces of analytic functions . Int. Eq. Operat. Theory 50(2004), 197210.CrossRefGoogle Scholar
Hayashi, E., The kernel of a Toeplitz operator . Int. Eq. Operat. Theory 9(1986), 588591.CrossRefGoogle Scholar
Hitt, D., Invariant subspaces of ${H}^2$ of an annulus. Pacific J. Math. 134(1988), 101120.CrossRefGoogle Scholar
Liang, Y., and Partington, J. R., Nearly invariant subspaces for operators in Hilbert spaces . Complex Anal. Oper. Theory 15(2021), 117.CrossRefGoogle Scholar
Sarason, D., Nearly invariant subspaces of the backward shift . Operat. Theory: Advances Applicat. 35(1988), 481493.Google Scholar
Sarason, D., Sub-Hardy Hilbert spaces in the unit disk, Lecture Notes in the. Mathematical Sciences, 10, Wiley, New York, 1994.Google Scholar
Yakubovich, D., Invariant subspaces of the operator of multiplication by $z$ in the space ${E}^p$ in a multiply connected domain . (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 178(1989), Issled. Lineĭn. Oper. Teorii Funktsiĭ. 18, 166183, 186–187; translation in J. Soviet Math. 61 (1992), 2046–2056Google Scholar