Published online by Cambridge University Press: 20 November 2018
It is well known and immediate that in an associative ring a nilpotent one-sided ideal generates a nilpotent two-sided ideal. The corresponding open question for alternative rings was raised by M. Slater [6, p. 476]. Hitherto the question has been answered only in the case of a trivial one-sided ideal J (i.e., in case J2 = 0) [5]. In this note we solve the question in its entirety by showing that a nilpotent one-sided ideal K of an alternative ring generates a nilpotent two-sided ideal. In the process we find an upper bound for the index of nilpotency of the ideal generated. The main theorem provides another proof of the fact that a semiprime alternative ring contains no nilpotent one-sided ideals. Finally we note the analogous result for locally nilpotent one-sided ideals.