Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T05:28:44.443Z Has data issue: false hasContentIssue false

Nilpotent-by-Noetherian Factorized Groups

Published online by Cambridge University Press:  20 November 2018

Bernhard Amberg
Affiliation:
Fachbereich Mathematik Universitât Mainz Saarstraβe 21 D - 6500 Mainz West Germany,
Silvana Franciosi
Affiliation:
Fachbereich Mathematik Universitât Mainz Saarstraβe 21 D - 6500 Mainz West Germany,
Francesco de Giovanni
Affiliation:
Dipartimento di Matematica Université di Napoli Via Mezzocannone 8 I - 80134 Napoli Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a soluble-by-finite product G = AB of a nilpotent-by-noetherian group A and a noetherian group B is nilpotentby- noetherian. Moreover, a bound for the torsion-free rank of the Fitting factor group of G is given, in terms of the torsion-free rank of the Fitting factor group of A and the torsion-free rank of B.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Amberg, B., Produkte von Gruppen mit endlichem torsionfreiem Rang, Arch. Math. (Basel) 45 (1985), 398–106.Google Scholar
2. Amberg, B., S. Franciosi and F. de Giovanni, Soluble groups which are the product of a nilpotent and a poly cyclic subgroup, Proceedings of the Singapore Group Theory Conference (1987), 277-239.Google Scholar
3. Heineken, H., Produkte abelscher Gruppen und ihre Fittinggruppe, Arch. Math. (Basel) 48 (1987), 185192.Google Scholar
4. Itô, N., Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400401.Google Scholar
5. Lennox, J. C. and Roseblade, J. E., Soluble products of poly cyclic groups, Math. Z. 170 (1980), 153154.Google Scholar
6. Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972.Google Scholar
7. Wilson, J. S., On products of soluble groups of finite rank, Comment. Math. Helv. 60 (1985), 337353.Google Scholar
8. Wilson, J. S., Soluble products of minimax groups and nearly surjective derivations, J. Pure Appl. Algebra 53 (1988), 297318.Google Scholar
9. Zaicev, D. I., Factorizations of poly cyclic groups, Math. Notes 29 (1981), 247252, Mat. Zametki 29 (1981), 481–490.Google Scholar