No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
A. Bonkat obtained a universal coefficient theorem in the setting of Kirchberg's ideal-related $KK$-theory in the fundamental case of a ${{C}^{*}}$-algebra with one specified ideal. The universal coefficient sequence was shown to split, unnaturally, under certain conditions. Employing certain $K$-theoretical information derivable from the given operator algebras using a method introduced here, we shall demonstrate that Bonkat's $\text{UCT}$ does not split in general. Related methods lead to information on the complexity of the $K$-theory which must be used to classify $*$-isomorphisms for purely infinite ${{C}^{*}}$-algebras with one non-trivial ideal.