1 Introduction
A norm $\| \cdot \|$ on $\mathrm {M}_n$ , the space of $n\times n$ complex matrices, is unitarily invariant if $\| UAV \|=\| A \|$ for all $A\in \mathrm {M}_n$ and unitary $U,V \in \mathrm {M}_n$ . A norm on $\mathbb {R}^n$ which is invariant under entrywise sign changes and permutations is a symmetric gauge function. A theorem of von Neumann asserts that any unitarily invariant norm on $\mathrm {M}_n$ is a symmetric gauge function applied to the singular values [Reference Horn and Johnson10, Theorem 7.4.7.2]. For example, the Schatten norms are unitarily invariant and defined for $d\geq 1$ by
in which $\sigma _1 \geq \sigma _2 \geq \cdots \geq \sigma _n \geq 0$ are the singular values of $A\in \mathrm {M}_n$ .
A norm $\| \cdot \|$ on the $\mathbb {R}$ -vector space $\mathrm {H}_n$ of $n\times n$ complex Hermitian matrices is weakly unitarily invariant if $\| U^*AU \|=\| A \|$ for all $A\in \mathrm {H}_n$ and unitary $U \in \mathrm {M}_n$ . For example, the numerical radius
is a weakly unitarily invariant norm on $\mathrm {H}_n$ [Reference Li12]. Lewis proved that any weakly unitarily invariant norm on $\mathrm {H}_n$ is a symmetric vector norm applied to the eigenvalues [Reference Lewis11, Section 8].
Our first result is a short proof of Lewis’ theorem that avoids his theory of group invariance in convex matrix analysis [Reference Lewis11], the wonderful but complicated framework that underpins [Reference Aguilar, Chávez, Garcia and Volčič1, Reference Chávez, Garcia and Hurley7]. Our new approach uses more standard techniques, such as Birkhoff’s theorem on doubly stochastic matrices [Reference Birkhoff6].
Theorem 1.1 A norm $\| \cdot \|$ on $\mathrm {H}_n$ is weakly unitarily invariant if and only if there is a symmetric norm $f:\mathbb {R}^n\to \mathbb {R}$ such that $\| A \|=f( \lambda _1, \lambda _2, \ldots , \lambda _n)$ for all $A\in \mathrm {H}_n$ . Here, $\lambda _1 \geq \lambda _2 \geq \cdots \geq \lambda _n$ are the eigenvalues of A.
The random-vector norms of the next theorem are weakly unitarily invariant norms on $\mathrm {H}_n$ that extend to weakly unitarily invariant norms on $\mathrm {M}_n$ (see Theorem 1.3). They appeared in [Reference Chávez, Garcia and Hurley7], and they generalize the complete homogeneous symmetric polynomial norms of [Reference Aguilar, Chávez, Garcia and Volčič1, Theorem 1]. The original proof of [Reference Chávez, Garcia and Hurley7, Theorem 1.1(a)] requires $d \geq 2$ and relies heavily on Lewis’ framework for group invariance in convex matrix analysis [Reference Lewis11]. However, Theorem 1.2 now follows directly from Theorem 1.1. Moreover, Theorem 1.2 generalizes [Reference Chávez, Garcia and Hurley7, Theorem 1.1(a)] to the case $d\geq 1$ .
Theorem 1.2 Let $d\geq 1$ be real and $\mathbf {X}$ be an independent and identically distributed (iid) random vector in $\mathbb {R}^n$ , that is, the entries of $\mathbf {X}=(X_1,X_2, \ldots , X_n)$ are nondegenerate iid random variables. Then
is a weakly unitarily invariant norm on $\mathrm {H}_n$ . Here, $\Gamma (\cdot )$ denotes the gamma function and $\boldsymbol {\lambda }=(\lambda _1,\lambda _2, \ldots , \lambda _n)$ denotes the vector of eigenvalues $\lambda _1 \geq \lambda _2 \geq \cdots \geq \lambda _n$ of A. Moreover, if the entries of $\mathbf {X}$ each have at least m moments, then for all $A\in \mathrm {H}_n$ the function $f:[1,m] \to \mathbb {R}$ defined by $f(d) =\| A \|_{\mathbf {X},d}$ is continuous.
The simplified proof of Theorem 1.1 and the extension of Theorem 1.2 from $d\geq 2$ to $d \geq 1$ permit the main results of [Reference Chávez, Garcia and Hurley7], restated below as Theorem 1.3, to rest on simpler foundations while enjoying a wider range of applicability. The many perspectives offered in Theorem 1.3 explain the normalization in (1.1).
Theorem 1.3 Let $\mathbf {X}=(X_1, X_2, \ldots , X_n)$ , in which $X_1, X_2, \ldots , X_n \in L^d(\Omega ,\mathcal {F},\mathbb {P})$ are nondegenerate iid random variables. Let $\boldsymbol {\lambda }=(\lambda _1,\lambda _2, \ldots , \lambda _n)$ denote the vector of eigenvalues $\lambda _1 \geq \lambda _2 \geq \cdots \geq \lambda _n$ of $A \in \mathrm {H}_n$ .
-
(1) For real $d\geq 1$ , $\| A \|_{\mathbf {X},d}= \bigg (\dfrac { \mathbb {E} |\langle \mathbf {X}, \boldsymbol {\lambda }\rangle |^d}{\Gamma (d+1)} \bigg )^{1/d}$ is a norm on $\mathrm {H}_n$ (now by Theorem 1.2).
-
(2) If the $X_i$ admit a moment generating function $M(t) = \mathbb {E} [e^{tX}] = \sum _{k=0}^{\infty } \mathbb {E} [X^k] \frac {t^k}{k!}$ and $d \geq 2$ is an even integer, then $\| A \|_{\mathbf {X},d}^d$ is the coefficient of $t^d$ in $M_{\Lambda }(t)$ for all $A \in \mathrm {H}_n$ , in which $M_{\Lambda }(t) = \prod _{i=1}^n M(\lambda _i t)$ is the moment generating function for the random variable $\Lambda =\langle \mathbf {X}, \boldsymbol {\lambda }(A) \rangle =\lambda _1X_1+\lambda _2X_2+\cdots +\lambda _n X_n$ . In particular, $\| A \|_{\mathbf {X},d}$ is a positive definite, homogeneous, symmetric polynomial in the eigenvalues of A.
-
(3) Let $d\geq 2$ be an even integer. If the first d moments of $X_i$ exist, then
$$ \begin{align*} \| A \|_{\mathbf{X},d}^d = \frac{1}{d!} B_{d}(\kappa_1\operatorname{tr} A, \kappa_2\operatorname{tr} A^2, \ldots, \kappa_d\operatorname{tr} A^d) =\sum_{\boldsymbol{\pi}\vdash d}\frac{\kappa_{\boldsymbol{\pi}}p_{\boldsymbol{\pi}} (\boldsymbol{\lambda})}{y_{\boldsymbol{\pi}}} \quad \text{for }A \in \mathrm{H}_n, \end{align*} $$in which:-
(a) $\boldsymbol {\pi }=(\pi _1, \pi _2, \ldots , \pi _r) \in \mathbb {N}^r$ is a partition of d; that is, $\pi _1 \geq \pi _2 \geq \cdots \geq \pi _r$ and $\pi _1+ \pi _2 + \cdots + \pi _r = d$ [Reference Stanley13, Section 1.7]; we denote this $\boldsymbol {\pi } \vdash d$ ;
-
(b) $p_{\boldsymbol {\pi }}(x_1, x_2, \ldots , x_n)=p_{\pi _1}p_{\pi _2}\cdots p_{\pi _r}$ , in which $p_k(x_1,x_2, \ldots , x_n)=x_1^k+x_2^k+\cdots +x_n^k$ is a power-sum symmetric polynomial;
-
(c) $B_d$ is a complete Bell polynomial, defined by $\sum _{\ell =0}^{\infty } B_{\ell }(x_1, x_2, \ldots , x_{\ell }) \frac {t^{\ell }}{\ell !} =\exp ( \sum _{j=1}^{\infty } x_j \frac {t^j}{j!})$ [Reference Bell2, Section II];
-
(d) The cumulants $\kappa _1, \kappa _2, \ldots , \kappa _d$ are defined by the recursion $\mu _r=\sum _{\ell =0}^{r-1}{r-1\choose \ell } \mu _{\ell }\kappa _{r-\ell }$ for $1 \leq r \leq d$ , in which $\mu _r = \mathbb {E}[X_1^r]$ is the rth moment of $X_1$ [Reference Billingsley5, Section 9]; and
-
(e) $\kappa _{\boldsymbol {\pi }} = \kappa _{\pi _1} \kappa _{\pi _2} \cdots \kappa _{\pi _{r}}$ and $y_{\boldsymbol {\pi }}=\prod _{i\geq 1}(i!)^{m_i}m_i!$ , in which $m_i=m_i(\boldsymbol {\pi })$ is the multiplicity of i in $\boldsymbol {\pi }$ .
-
-
(4) For real $d\geq 1$ , the function $\boldsymbol {\lambda }(A) \mapsto \| A \|_{\mathbf {X},d}$ is Schur convex; that is, it respects majorization $\prec $ (see (3.1)).
-
(5) Let $d\geq 2$ be an even integer. Define $\mathrm {T}_{\boldsymbol {\pi }} : \mathrm {M}_{n}\to \mathbb {R}$ by setting $\mathrm {T}_{\boldsymbol {\pi }}(Z)$ to be $1/{d\choose d/2}$ times the sum over the $\binom {d}{d/2}$ possible locations to place $d/2$ adjoints ${}^*$ among the d copies of Z in $(\operatorname {tr} \underbrace {ZZ\cdots Z}_{\pi _1}) (\operatorname {tr} \underbrace {ZZ\cdots Z}_{\pi _2}) \cdots (\operatorname {tr} \underbrace {ZZ\cdots Z}_{\pi _r})$ . Then
(1.2) $$ \begin{align} \| Z \|_{\mathbf{X},d}= \bigg( \sum_{\boldsymbol{\pi} \,\vdash\, d} \frac{ \kappa_{\boldsymbol{\pi}}\mathrm{T}_{\boldsymbol{\pi}}(Z)}{y_{\boldsymbol{\pi}}}\bigg)^{1/d}\end{align} $$is a norm on $\mathrm {M}_n$ that restricts to the norm on $\mathrm {H}_n$ above. In particular, $\| Z \|_{\mathbf {X},d}^d$ is a positive definite trace polynomial in Z and $Z^*$ .
The paper is structured as follows. Section 2 provides several examples afforded by the theorems above. The proofs of Theorems 1.1 and 1.2 appear in Sections 3 and 4, respectively. Section 5 concludes with some brief remarks.
2 Examples
The norm $\| \cdot \|_{\mathbf {X},d}$ defined in (1.1) is determined by its unit ball. This provides one way to visualize the properties of random vector norms. We consider a few examples hereand refer the reader to [Reference Chávez, Garcia and Hurley7, Section 2] for further examples and details.
2.1 Normal random variables
Suppose $d\geq 2$ is an even integer and $\mathbf {X}$ is a random vector whose entries are independent normal random variables with mean $\mu $ and variance $\sigma ^2$ . The example in [Reference Chávez, Garcia and Hurley7, equation (2.12)] illustrates
in which $\| \cdot \|_{\operatorname {F}}$ is the Frobenius norm. For $d=2$ , the extension to $\mathrm {M}_n$ guaranteed by Theorem 1.3 is $\| Z \|_{\mathbf {X},2}^2= \tfrac {1}{2} \sigma ^2 \operatorname {tr}(Z^*\!Z) + \tfrac {1}{2} \mu ^2 (\operatorname {tr} Z^*)(\operatorname {tr} Z)$ [Reference Chávez, Garcia and Hurley7, p. 816].
Now, let $n=2$ . If $\mu =0$ , the restrictions of $\| \cdot \|_{\mathbf {X},d}$ to $\mathbb {R}^2$ (whose elements are identified with diagonal matrices) reproduce multiples of the Euclidean norm. If $\mu \neq 0$ , then the unit circles for $\| \cdot \|_{\mathbf {X},d}$ are approximately elliptical (see Figure 1).
2.2 Standard exponential random variables
If $d\geq 2$ is an even integer and $\mathbf {X}$ is a random vector whose entries are independent standard exponential random variables, then $\| A \|_{\mathbf {X},d}^d$ equals the complete homogeneous symmetric polynomial $h_d(\lambda _1, \lambda _2, \ldots , \lambda _n)=\sum _{1\leq k_1\leq \cdots \leq k_d\leq n} \lambda _{k_1}\lambda _{k_2}\cdots \lambda _{k_d}$ in the eigenvalues $\lambda _1, \lambda _2, \ldots , \lambda _n$ [Reference Aguilar, Chávez, Garcia and Volčič1]. For $d=4$ , the extension to $\mathrm {M}_n$ guaranteed by Theorem 1.3 is [Reference Aguilar, Chávez, Garcia and Volčič1, equation (9)]
The unit balls for these norms are illustrated in Figure 2 (left).
2.3 Bernoulli random variables
A Bernoulli random variable is a discrete random variable X defined according to $\mathbb {P}(X=k)=q^k(1-q)^{1-k}$ for $k=0,1$ and $0<q<1$ . Suppose d is an even integer and $\mathbf {X}$ is a random vector whose entries are independental Bernoulli random variables with parameter q.
Remark 2.1 An expression for $\| A \|^d_{\mathbf {X},d}$ appears in [Reference Chávez, Garcia and Hurley7, Section 2.7]. However, there is a missing multinomial coefficient. The correct expression for $\| A \|^d_{\mathbf {X},d}$ is given by
in which $|I|$ is the number of nonzero $i_k$ ; that is, $I = \{ k : i_k \neq 0\}$ . We thank the anonymous referee for pointing out the typo in [Reference Chávez, Garcia and Hurley7, Section 2.7]. Figures 2 (right) and 3 illustrate the unit balls for these norms in a variety of cases.
2.4 Pareto random variables
Suppose $\alpha , x_m>0$ . A random variable X distributed according to the probability density function
is a Pareto random variable with parameters $\alpha $ and $x_m$ . Suppose $\mathbf {X}$ is a random vector whose entries are Pareto random variables. Then $\| A \|_{\mathbf {X},d}$ exists whenever $\alpha>d$ [Reference Chávez, Garcia and Hurley7, Section 2.10].
Suppose $d=2$ and $\mathbf {X}$ is a random vector whose entries are independent Pareto random variables with $\alpha>2$ and $x_m=1$ . If $n=2$ , then
Figure 4 (left) illustrates the unit circles for $\| \cdot \|_{\mathbf {X},2}$ with varying $\alpha $ . As $\alpha \to \infty $ , the unit circles approach the parallel lines at $\lambda _2=\pm \sqrt {2}-\lambda _1$ ; that is, $|\operatorname {tr} A|^2 = 2$ . Figure 4 (right) depicts the unit circles for $\| \cdot \|_{\mathbf {X},d}$ with fixed $\alpha $ and varying d.
3 Proof of Theorem 1.1
The proof of Theorem 1.1 follows from Propositions 3.1 and 3.5.
Proposition 3.1 If $\| \cdot \|$ is a weakly unitarily invariant norm on $\mathrm {H}_n$ , then there is a symmetric norm f on $\mathbb {R}^n$ such that $\| A \|=f( \boldsymbol {\lambda }(A))$ for all $A\in \mathrm {H}_n$ .
Proof Hermitian matrices are unitarily diagonalizable. Since $\| \cdot \|$ is weakly unitarily invariant, $\| A \|=\| D \|$ , in which D is a diagonalization of A. Consequently, $\| A \|$ must be a function in the eigenvalues of A. Moreover, any permutation of the entries in D is obtained by conjugating D by a permutation matrix, which is unitary. Therefore, $\| A \|$ is a symmetric function in the eigenvalues of A. In particular, $\| A \|=f( \boldsymbol {\lambda }(A) )$ for some symmetric function f. Given $\mathbf {a}=( a_1, a_2,\dots , a_n)\in \mathbb {R}^n$ , define the Hermitian matrix
Then $\boldsymbol {\lambda }(\operatorname {diag}{\mathbf {a}}) = P\mathbf {a}$ for some permutation matrix P. Symmetry of f implies
Consequently, f inherits the defining properties of a norm on $\mathbb {R}^n$ .
Let $\widetilde {\mathbf {x}}=(\widetilde {x}_1,\widetilde {x}_2, \ldots , \widetilde {x}_n)$ denote the nondecreasing rearrangement of $\mathbf {x}= (x_1, x_2, \ldots , x_n)\in \mathbb {R}^n$ . Then $\mathbf {y}$ majorizes $\mathbf {x}$ , denoted $\mathbf {x}\prec \mathbf {y}$ , if
Recall that a matrix with nonnegative entries is doubly stochastic if each row and column sums to $1$ . The next result is due to Hardy, Littlewood, and Pólya [Reference Hardy, Littlewood and Pólya9].
Lemma 3.2 If $\mathbf {x}\prec \mathbf {y}$ , then there exists a doubly stochastic matrix D such that $\mathbf {y} = D \mathbf {x}$ .
The next lemma is Birkhoff’s [Reference Birkhoff6]; $n^2-n+1$ works in place of $n^2$ [Reference Horn and Johnson10, Theorem 8.7.2].
Lemma 3.3 If $D \in \mathrm {M}_n$ is doubly stochastic, then there exist permutation matrices $P_1,P_2,\ldots ,P_{n^2} \in \mathrm {M}_n$ and nonnegative numbers $c_1,c_2,\ldots ,c_{n^2}$ satisfying $\sum _{i=1}^{n^2} c_i = 1$ such that $D = \sum _{i=1}^{n^2} c_i P_i$ .
For each $A \in \mathrm {H}_n$ , recall that $\boldsymbol {\lambda }(A)=(\lambda _1(A),\lambda _2(A), \ldots , \lambda _n(A))$ denotes the vector of eigenvalues $\lambda _1(A) \geq \lambda _2(A) \geq \cdots \geq \lambda _n(A)$ . We regard $\boldsymbol {\lambda }(A)$ as a column vector for purposes of matrix multiplication.
Lemma 3.4 If $A, B\in \mathrm {H}_n$ , then there exist permutation matrices $P_1,P_2,\ldots ,P_{n^2} \in \mathrm {M}_n$ and $c_1,c_2,\ldots ,c_{n^2}\geq 0$ such that
Proof The Ky Fan eigenvalue inequality [Reference Fan8] asserts that
The sum of the eigenvalues of a matrix is its trace. Consequently,
so equality holds in (3.2) for $k=n$ . Thus, $\boldsymbol {\lambda }(A+B) \prec \boldsymbol {\lambda }(A) + \boldsymbol {\lambda }(B)$ . Lemma 3.2 provides a doubly stochastic matrix D such that $\boldsymbol {\lambda }(A+B) = D(\boldsymbol {\lambda }(A) + \boldsymbol {\lambda }(B))$ . Lemma 3.3 provides the desired permutation matrices and nonnegative scalars.
The following proposition completes the proof of Theorem 1.1.
Proposition 3.5 If f is a symmetric norm on $\mathbb {R}^n$ , then $\| A \|=f(\boldsymbol {\lambda }(A))$ defines a weakly unitarily invariant norm on $\mathrm {H}_n$ .
Proof The function $\| A \|=f(\boldsymbol {\lambda }(A))$ is symmetric in the eigenvalues of A, so it is weakly unitarily invariant. It remains to show that $\| \cdot \|$ defines a norm on $\mathrm {H}_n$ .
Positive definiteness. A Hermitian matrix $A = 0$ if and only if $\boldsymbol {\lambda }(A) = 0$ . Thus, the positive definiteness of f implies the positive definiteness of $\| \cdot \|$ .
Homogeneity. If $c\geq 0$ , then $\boldsymbol {\lambda }(cA) = c\boldsymbol {\lambda }(A)$ . If $c<0$ , then
Then the homogeneity and symmetry of f imply that
Triangle inequality. Suppose that $A,B \in \mathrm {H}_n$ . Lemma 3.4 ensures that there exist permutation matrices $P_1,P_2,\ldots ,P_{n^2} \in \mathrm {M}_n$ and nonnegative numbers $c_1,c_2,\ldots ,c_{n^2}$ satisfying $\sum _{i=1}^{n^2} c_i = 1$ such that $D = \sum _{i=1}^{n^2} c_i P_i$ . Thus,
The triangle inequality and homogeneity of f yield
Since f is permutation invariant and $\sum _{i = 1}^{n^2} c_i = 1$ ,
Thus, the triangle inequality for f and (3.3) yield
4 Proof of Theorem 1.2
Let $\mathbf {X}$ be an iid random vector and define $f_{\mathbf {X},d}:\mathbb {R}^n\to \mathbb {R}$ by
Since the entries of $\mathbf {X}$ are iid, $f_{\mathbf {X},d}$ is symmetric. In light of Theorem 1.1, it suffices to show that $f_{\mathbf {X},d}$ is a norm on $\mathbb {R}^n$ ; the continuity remark at the end of Theorem 1.2 is Proposition 4.2.
Proposition 4.1 The function $f_{\mathbf {X},d}$ in (4.1) defines a norm on $\mathbb {R}^n$ for all $d\geq 1$ .
Proof The proofs for homogeneity and the triangle inequality in [Reference Chávez, Garcia and Hurley7, Section 3.1] are valid for $d\geq 1$ . However, the proof for positive definiteness in [Reference Chávez, Garcia and Hurley7, Lemma 3.1] requires $d\geq 2$ . The proof below holds for $d\geq 1$ and is simpler than the original.
Positive definiteness. If $f_{\mathbf {X},d}(\boldsymbol {\lambda })=0$ , then $\mathbb {E}|\langle \mathbf {X},\boldsymbol {\lambda }\rangle |^d=0$ . The nonnegativity of $|\langle \mathbf {X},\boldsymbol {\lambda }\rangle |^d$ ensures that
almost surely. Assume (4.2) has a nontrivial solution $\boldsymbol {\lambda }$ with nonzero entries $\lambda _{i_1}, \lambda _{i_2}, \ldots , \lambda _{i_k}$ . If $k=1$ , then $X_{i_k}=0$ almost surely, which contradicts the nondegeneracy of our random variables. If $k>1$ , then (4.2) implies that
almost surely, in which $a_{i_j}=-\lambda _{i_j}/\lambda _{i_1}$ . The independence of $X_{i_1}, X_{i_2}, \ldots , X_{i_k}$ contradicts (4.3). Relation (4.2) therefore has no nontrivial solutions.
Homogeneity. This follows from the bilinearity of the inner product and linearity of expectation:
Triangle inequality. For $\boldsymbol {\lambda }, \boldsymbol {\mu }\in \mathbb {R}^n$ , define random variables $X=\langle \mathbf {X},\boldsymbol {\lambda }\rangle $ and $Y=\langle \mathbf {X},\boldsymbol {\mu }\rangle $ . Minkowski’s inequality implies
The triangle inequality for $f_{\mathbf {X},d}$ follows.
Proposition 4.2 Suppose $\mathbf {X}$ is an iid random vector whose entries have at least m moments. The function $f:\left [1,m\right ] \to \mathbb {R}$ defined by $f(d) =\| A \|_{\mathbf {X},d}$ is continuous for all $A\in \mathrm {H}_n$ .
Proof Define the random variable $Y = \langle \mathbf {X}, \boldsymbol {\lambda }\rangle $ , in which $\boldsymbol {\lambda }$ denotes the vector of eigenvalues of A. The random variable Y is a measurable function defined on a probability space $(\Omega , \mathcal {F}, \mathbb {P})$ . The pushforward measure of Y is the probability measure $\mu _{Y}$ on $\mathbb {R}$ defined by $\mu _Y(E)=\mathbb {P} (Y^{-1}(E) )$ for all Borel sets E. Consequently,
The bound $|x|^d \leq |x| + |x|^m$ holds for all $x\in \mathbb {R}$ and $1 \leq d \leq m$ . Therefore,
If $d_i\to d$ , then $\int |x|^{d_i}d\mu _Y\to \int |x|^{d}d\mu _Y$ by the dominated convergence theorem. Consequently, $ \Gamma (d_i+1) (f(d_i) )^{d_i}\to \Gamma (d+1) (f(d) )^d $ whenever $d_i\to d$ . The function $\Gamma (d+1) (f(d) )^d$ is therefore continuous in d. The continuity of the gamma function establishes continuity for $f^d$ and f.
5 Remarks
Remark 5.1 A norm $\| \cdot \|$ on $\mathrm {M}_n$ is weakly unitarily invariant if $\| A \|=\| U^*AU \|$ for all $A\in \mathrm {M}_n$ and unitary $U \in \mathrm {M}_n$ . A norm $\Phi $ on the space $C(S)$ of continuous functions on the unit sphere $S\subset \mathbb {C}^n$ is a unitarily invariant function norm if $\Phi (f\circ U)=\Phi (f)$ for all $f\in C(S)$ and unitary $U \in \mathrm {M}_n$ . Every weakly unitarily invariant norm $\| \cdot \|$ on $\mathrm {M}_n$ is of the form $\| A \|=\Phi (f_A)$ , in which $f_A\in C(S)$ is defined by $f_A(\mathbf {x})=\langle A\mathbf {x},\mathbf {x}\rangle $ and $\Phi $ is a unitarily invariant function norm [Reference Bhatia and Holbrook4], [Reference Bhatia3, Theorem 2.1].
Remark 5.2 Remark 3.4 of [Reference Chávez, Garcia and Hurley7] is somewhat misleading. We state there that the entries of $\mathbf {X}$ are required to be identically distributed but not independent. To clarify, the entries of $\mathbf {X}$ being identically distributed guarantee that $\| \cdot \|_{\mathbf {X},d}$ satisfies the triangle inequality on $\mathrm {H}_n$ . The additional assumption of independence guarantees that $\| \cdot \|_{\mathbf {X},d}$ is also positive definite.
Acknowledgment
We thank the referee for many helpful comments.