Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:09:14.715Z Has data issue: false hasContentIssue false

A Note on Giuga's Conjecture

Published online by Cambridge University Press:  20 November 2018

Vicentiu Tipu*
Affiliation:
Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4 e-mail: vtipu@math.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G\left( X \right)$ denote the number of positive composite integers $n$ satisfying $\sum\nolimits_{j=1}^{n-1}{{{j}^{n-1}}}\equiv -1\left( \,\bmod \,n \right)$. Then $G\left( X \right)\ll {{X}^{1/2}}\log \,X$ for sufficiently large $X$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Agoh, T., On Giuga's conjecture. Manuscripta Math. 87(1995), no. 4, 501510.Google Scholar
[2] Alford, W. R., Granville, A., and Pomerance, C., There are infinitely many Carmichael numbers. Ann. of Math. 139(1994), no. 3, 703722.Google Scholar
[3] Bedocchi, E., Note on a conjecture about prime numbers. (Italian), Riv. Mat. Univ. Parma 11(1985), 229236.Google Scholar
[4] Borwein, D., Borwein, J. M., Borwein, P. B., and Girgensohn, R., Giuga's conjecture on primality. Amer.Math. Monthly 103(1996), no. 1, 4050.Google Scholar
[5] Borwein, J. M., Wong, E., A survey of results relating to Giuga's conjecture on primality. In: Advances in Mathematical Sciences: CRM's 25 years. CRM Proc. Lecture Notes 11, American Mathematical Society, Providence, RI, 1997, pp. 1327.Google Scholar
[6] Erdőos, P., On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen 4(1956), 201206.Google Scholar
[7] Giuga, G., Su una presumibile proprietá caratteristica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat. 14(83)(1950). 511528.Google Scholar
[8] Korselt, A., Problème chinois. L’intermediaire des mathematiciens 6(1899), 142143.Google Scholar
[9] Pomerance, C., Two methods in elementary analytic number theory. In: Number Theory and Applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer, Dordrecht, 1989, pp. 135161.Google Scholar
[10] Pomerance, C., Selfridge, J. L., and Wagstaff, S., The pseudoprimes to 25 · 109 . Math. Comp. 35(1980), no. 151, 10031026.Google Scholar
[11] Ribenboim, P., The little book of bigger primes. Second edition. Springer-Verlag, New York, 2004.Google Scholar