No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Cordes and Labrousse ([2] p. 697), and Kaniel and Schechter ([6] p. 429) showed that if S and T are domain-dense closed linear operators on a Hilbert space H into itself, the range of S is closed in H and the codimension of the range of S is finite, then, (TS)* = S*T*. With a somewhat different approach and more restricted condition on S, the same assertion was obtained by Holland [5] recently, that S is a bounded everywhere-defined linear operator whose range is a closed subspace of finite codimension in H.