No CrossRef data available.
Article contents
On 2-Summing Operators
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this note all Banach space are assumed to be real and separable and their norms will be denoted by || ||. The canonical bilinear form between a Banach space B and its topological dual B′ will be denoted by 〈x, y〉, x ∊ B, y ∊ B′.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1974
References
2.
Lepingle, D., Applications p-sommantes; inégalité de Pietsch; factorization. Séminaire L. Schwartz, 1969-1970, Exposé no. 7.Google Scholar
3.
Martin, J., Une caractérisation des opérateurs de Hilbert-Schmidt, Séminaire L. Schwartz, 1969-1970, Exposé no. 8.Google Scholar
4.
Pietsch, A., Absolut p-summierende Abbildunger in normierter Räumen, Studia Math. 28 (1967) 333-353.Google Scholar
5.
Pietsch, A., Hilbert-Schmidt Abbildungen in Banach Räumen, Math. Nachr. 37 (1968) 237-245.Google Scholar
You have
Access