No CrossRef data available.
Article contents
On a Theorem of Bers, with Applications to the Study of Automorphism Groups of Domains
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study and generalize a classical theoremof L. Bers that classifies domains up to biholomorphic equivalence in terms of the algebras of holomorphic functions on those domains. Then we develop applications of these results to the study of domains with noncompact automorphism group.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2016
References
[1]
Bers, L., On rings of analytic functions.
Bull. Amer. Math. Soc.
54(1948), 311-315. http://dx.doi.org/10.1090/S0002-9904-1948-08992-3
Google Scholar
[2]
Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains.
Invent. Math.
26(1974), 1–65. http://dx.doi.org/10.1007/BF01406845
Google Scholar
[3]
Graham, C. R., Scalar boundary invariants and the Bergman kernel. Complex analysis, II (College Park, Md., 1985-86), Lecture Notes in Math., 1276, Springer, Berlin, 1987, pp. 108–135. http://dx.doi.org/10.1007/BFb0078958
Google Scholar
[4]
Greene, R. E., Kim, K.-T., and Krantz, S. G., The geometry of complex domains.Progress in Mathematics, 291, BirkhâuserBoston, Boston, MA, 2011. http://dx.doi.org/10.1007/978-0-8176-4622-6
Google Scholar
[5]
Greene, R. E. and Krantz, S. G., Deformations of complex structure, estimates for the d-equation, and stability of the Bergman kernel.
Advances in Math.
43(1982), no. 1,1-86.http://dx.doi.org/10.1016/0001-8708(82)90028-7
http://dx.doi.org/10.101 6/0001-8708(82)90028-7
Google Scholar
[6]
Kerzman, N. and Nagel, A., Finitely generated ideals in certain function algebras.
J. Functional Analysis
7(1971), 212–215. http://dx.doi.org/10.1016/0022-1236(71)90053-X
Google Scholar
[7]
Klembeck, P. F., Kâhlermetrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets.
Indiana Univ. Math. J.
27(1978), no. 2, 275–282. http://dx.doi.org/10.1512/iumj.1978.27.27020
Google Scholar
[8]
Krantz, S. G., Function theory of several complex variables. American Mathematical Society, Providence, RI, 2001.Google Scholar
[9]
Krantz, S. G., Geometric function theory. Explorations in complex analysis. Cornerstones, Birkhâuser Boston, Boston, MA, 2006.Google Scholar
[10]
Qi-Keng, L., On Kâhlermanifolds with constant curvature.
Acta. Math.Sinica 16(1966), 269–281 (Chinese); Chinese Math. 9(1966), 283–298.Google Scholar
[11]
Ohsawa, T., A remark on the completeness of the Bergman metric.
Proc. Japan Acad. Ser. A Math. Sci.
57(1981), no. 4, 238–240. http://dx.doi.org/10.3792/pjaa.57.238
Google Scholar
[12]
Siu, Y.-T., The d problem with uniform bounds on derivatives.Math. Ann. 207(1974), 163–176. http://dx.doi.org/10.1007/BF01362154
Google Scholar
[13]
Wong, B., Characterizations of the ball in
C” by its automorphism group. Invent. Math.
41(1977), no. 3, 253–257. http://dx.doi.org/10.1007/BF01403050
Google Scholar
[14]
Zame, W. R., Homomorphisms of rings of germs of analytic functions.
Proc. Amer. Math. Soc.
33(1972), 410–414. http://dx.doi.org/10.1090/S0002-9939-1972-0289808-6
Google Scholar
[15]
Zame, W. R., Induced homomorphisms of algebras of analytic germs. Complex Analysis, 1972 (Proc. Conf, Rice Univ., Houston, Tex., 1972), Vol. II: Analysis on singularities.
Rice Univ. Studies
59(1973), no. 2, 157–163.Google Scholar
You have
Access