Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T10:00:33.376Z Has data issue: false hasContentIssue false

On Abelian Permutation Groups

Published online by Cambridge University Press:  20 November 2018

R. Bercov
Affiliation:
University of Alberta
L. Moser
Affiliation:
University of Alberta
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The principal object of this note is to determine the maximal order of Abelian subgroups of the symmetric group sn of degree n. We also discuss some related results and problems.

A largest Abelian subgroup of sn has order f(n) where

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Evans, A., Problem 80, solution byV. Linis. Can. Math. Bull. 7 (1964), p. 626.Google Scholar
2. Moser, L., Problem 125, solution byL. Carlitz. πμϵ Journal, 3(1961), pp. 232-233.Google Scholar
3. Golomb, S. W., Two combinatorial problems of mathematical and practical significance. Mimeographed notes (I960). 11 pp. + tables.Google Scholar
4. Scott, W. R., Group Theory. Prentice Hall (1964), p. 265.Google Scholar
5. Ore, O., Contributions to the theory of groups of finite order. Duke Math. Jour. 5(1939), pp. 431-460.Google Scholar
6. Powsner, A., Űber eine Substitutionsgruppe kleinster Gerades die einer gegebener Abelschen Gruppe isomorph ist. Commun. Instit. Sci. Kharkov 4,14(1937), pp. 151-157.Google Scholar
7. Hudson, W. H. H., Educational Times Reprints 2. London (1865), p. 105.Google Scholar
8. Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen. Verlag von B. G. Teubner. Leipzig und Berlin 1909. vol.1, pp.222-229.Google Scholar
9. Ball, W. W.Rouse, Math Recreations and Essays. Revised by H. S. M. Coxeter. 11th ed. MacMillan and Co. London (1944), pp. 311-312.Google Scholar