Article contents
On an Exponential Functional Inequality and its Distributional Version
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $G$ be a group and $\mathbb{K}\,=\,\mathbb{C}\,\text{or}\,\mathbb{R}$. In this article, as a generalization of the result of Albert and Baker, we investigate the behavior of bounded and unbounded functions $f\,:\,G\,\to \,\mathbb{K}$ satisfying the inequality
Where $\phi :\,{{G}^{n-1}}\,\to \,[0,\,\infty )$. Also as a a distributional version of the above inequality we consider the stability of the functional equation
where $u$ is a Schwartz distribution or Gelfand hyperfunction, $\circ$ and $\otimes$ are the pullback and tensor product of distributions, respectively, and $S\left( {{x}_{1}},\,.\,.\,.\,,{{x}_{n}} \right)\,=\,{{x}_{1}}\,+\,.\,.\,.\,+\,{{x}_{n}}$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2015
References
- 4
- Cited by