Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T12:56:26.594Z Has data issue: false hasContentIssue false

On Braided and Ribbon Unitary Fusion Categories

Published online by Cambridge University Press:  20 November 2018

César Galindo*
Affiliation:
Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia e-mail: cn.galindo1116@uniandes.edu.cocesarneyit@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that every braiding over a unitary fusion category is unitary and every unitary braided fusion category admits a unique unitary ribbon structure.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Baez, J. C., Higher-dimensional algebra. II. 2-Hilbert spaces. Adv. Math. 127 (1997), no. 2, 125–189. http://dx.doi.org/10.1006/aima.1997.1617 Google Scholar
[2] Drinfeld, V., Gelaki, S., Nikshych, D., and Ostrik, V., On braided fusion categories. I. Selecta Math. (N.S.) 16 (2010), no. 1, 1–119. http://dx.doi.org/10.1007/s00029-010-0017-z Google Scholar
[3] Etingof, P., Nikshych, D., and Ostrik, V., On fusion categories. Ann. of Math. (2) 162 (2005), no. 2, 581–642. http://dx.doi.org/10.4007/annals.2005.162.581 Google Scholar
[4] Etingof, P., Nikshych, D., and Ostrik, V., Weakly group-theoretical and solvable fusion categories. Adv. Math. 226 (2011), no. 1, 176–205. http://dx.doi.org/10.1016/j.aim.2010.06.009 Google Scholar
[5] Etingof, P., Nikshych, D., and Ostrik, V., Fusion categories and homotopy theory. Quantum Topology 1 (2010), no. 3, 209–273. http://dx.doi.org/10.4171/QT/6 Google Scholar
[6] Freedman, M. H., P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 95 (1998), no. 1, 98–101. http://dx.doi.org/10.1073/pnas.95.1.98 Google Scholar
[7] Galindo, C., Hong, S.-M., and Rowell, E., Generalized and quasi-localizations of braid group representations. Int. Math. Res. Not. IMRN 2013, no. 3, 693–731.Google Scholar
[8] Gelaki, S. and Nikshych, D., Nilpotent fusion categories. Adv. Math. 217 (2008), no. 3, 1053–1071. http://dx.doi.org/10.1016/j.aim.2007.08.001 Google Scholar
[9] Kassel, C., Quantum groups. Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995.Google Scholar
[10] Kitaev, A. Yu., Fault-tolerant quantum computation by anyons. Ann. Physics 303 (2003), no. 1, 2–30. http://dx.doi.org/10.1016/S0003-4916(02)00018-0 Google Scholar
[11] Moore, G. and Read, N., Nonabelions in the fractional quantum Hall efect. Nuclear Phys. B 360 (1991), no. 2–3, 362–396. http://dx.doi.org/10.1016/0550-3213(91)90407-O Google Scholar
[12] Müeger, M., Galois theory for braided tensor categories and the modular closure. Adv. Math. 150 (2000), no. 2, 151–201. http://dx.doi.org/10.1006/aima.1999.1860 Google Scholar
[13] Müeger, M., From subfactors to categories and topology II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180 (2003), no. 1–2, 159–219. http://dx.doi.org/10.1016/S0022-4049(02)00248-7 Google Scholar
[14] Read, N. and Rezayi, E., Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59 (1999), 8084.Google Scholar
[15] Rowell, E. C., On a family of non-unitarizable ribbon categories. Math. Z. 250 (2005), no. 4, 745–774. http://dx.doi.org/10.1007/s00209-005-0773-1 Google Scholar
[16] Turaev, V. G., Quantum invariants of knots and 3-manifolds. Second Revised Ed., de Gruyter Studies in Mathematics, 18, Walter de Gruyter and Co., Berlin, 2010.Google Scholar
[17] Wang, Z., Topological quantum computation. CBMS Regional Conference Series in Mathematics, 112, American Mathematical Society, Providence, RI, 2010.Google Scholar
[18] Wenzl, H., C*-tensor categories from quantum groups. J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. http://dx.doi.org/10.1090/S0894-0347-98-00253-7 Google Scholar
[19] Witten, E., Topological quantum field theory. Comm. Math. Phys. 117 (1998), no. 3, 353–386. http://dx.doi.org/10.1007/BF01223371 Google Scholar
[20] Yamagami, S., Polygonal presentations of semisimple tensor categories. J. Math. Soc. Japan 54 (2002), no. 1, 61–88. http://dx.doi.org/10.2969/jmsj/1191593955 Google Scholar