Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T10:08:34.815Z Has data issue: false hasContentIssue false

On Deformations of 1-motives

Published online by Cambridge University Press:  04 January 2019

A. Bertapelle
Affiliation:
Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, via Trieste, 63, I-35121 Padova, Italy Email: alessandra.bertapelle@unipd.it
N. Mazzari
Affiliation:
Institut de Mathématiques de Bordeaux, University of Bordeaux, F-33405 Talence cedex, France Email: nicola.mazzari@math.u-bordeaux.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

According to a well-known theorem of Serre and Tate, the infinitesimal deformation theory of an abelian variety in positive characteristic is equivalent to the infinitesimal deformation theory of its Barsotti–Tate group. We extend this result to 1-motives.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

References

Andreatta, F. and Bertapelle, A., Universal extension crystals of 1-motives and applications . J. Pure Appl. Algebra 215(2011), no. 8, 19191944. https://doi.org/10.1016/j.jpaa.2010.11.004.Google Scholar
Andreatta, F. and Barbieri-Viale, L., Crystalline realizations of 1-motives . Math. Ann. 331(2005), 111172. https://doi.org/10.1007/s00208-004-0576-4.Google Scholar
Bertapelle, A. and González-Avilés, C. D., The Greenberg functor revisited. Eur. J. Math. (2018). https://doi.org/10.1007/s40879-017-0210-0.Google Scholar
Deligne, P., Théorie de Hodge. III . Inst. Hautes Études Sci. Publ. Math. 44(1974), 577.10.1007/BF02685881Google Scholar
Greenberg, M. J., Schemata over local rings. II . Ann. of Math. 78(1963), 256266. https://doi.org/10.2307/1970342.Google Scholar
Katz, N., Serre–Tate local moduli . In: Algebraic surfaces (Orsay, 1976–78), Lecture Notes in Math., 868, Springer, Berlin-New York, 1981, pp. 138202.Google Scholar
Madapusi Sampath, K. S., Toroidal compactifications of integral models of Shimura varieties of Hodge type. PhD thesis, Chicago, 2011.Google Scholar
Messing, W., The crystals associated to Barsotti–Tate groups with applications to abelian schemes. Lecture Notes in Mathematics, 264, Springer-Verlag, Berlin-New York, 1972.10.1007/BFb0058301Google Scholar