Published online by Cambridge University Press: 20 November 2018
Let $\mathfrak{a}$ be an ideal of a Noetherian local ring $R$ and let $C$ be a semidualizing $R$-module. For an $R$-module $X$, we denote any of the quantities $\text{f}{{\text{d}}_{R}}X,\,\text{Gf}{{\text{d}}_{R}}X$ and ${{\text{G}}_{\text{C}}}-\text{f}{{\text{d}}_{R}}\,X\,\text{by}\,\text{T}\left( X \right)$. Let $M$ be an $R$-module such that $\text{H}_{\mathfrak{a}}^{i}\left( M \right)\,=\,0$ for all $i\,\ne \,n$. It is proved that if $T\left( M \right)\,<\,\infty$, then $\text{T}\left( \text{H}_{\mathfrak{a}}^{n}\left( M \right) \right)\,\le \,\text{T}\left( M \right)\,+\,n$, and the equality holds whenever $M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules, and Gorenstein rings.