Published online by Cambridge University Press: 20 November 2018
In [1] it was shown that a continuous function of bounded variation on the real line determined a Method II outer measure for which the Borel sets were measurable and the measure of an open interval was equal to the total variation of f over the interval. The monotone property of measures implied that if an open interval I on which f was not of bounded variation contained subintervals on which f was of finite but arbitrarily large total variation then the measure of I was infinite. Since there are continuous functions that are not of bounded variation over any interval (e.g. the Weierstrasse nondifferentiable function) the general case was not resolved.