Article contents
On Modules Whose Proper Homomorphic Images Are of Smaller Cardinality
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $R$ be a commutative ring with identity, and let $M$ be a unitary module over $R$. We call $M$$\text{H}$-smaller ($\text{HS}$ for short) if and only if $M$ is infinite and $\left| M/N \right|\,<\,\,\left| M \right|$ for every nonzero submodule $N$ of $M$. After a brief introduction, we show that there exist nontrivial examples of HS modules of arbitrarily large cardinality over Noetherian and non-Noetherian domains. We then prove the following result: suppose $M$ is faithful over $R$, $R$ is a domain (we will show that we can restrict to this case without loss of generality), and $K$ is the quotient field of $R$. If $M$ is $\text{HS}$ over $R$, then $R$ is $\text{HS}$ as a module over itself, $R\,\subseteq \,M\,\subseteq \,K$, and there exists a generating set $S$ for $M$ over $R$ with $\left| S \right|\,<\,\left| R \right|$. We use this result to generalize a problem posed by Kaplansky and conclude the paper by answering an open question on Jónsson modules.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012
References
- 7
- Cited by