No CrossRef data available.
Article contents
On Periodic Solutions to Constrained Lagrangian System
Part of:
Qualitative theory
Published online by Cambridge University Press: 18 December 2019
Abstract
A Lagrangian system is considered. The configuration space is a non-compact manifold that depends on time. A set of periodic solutions has been found.
Keywords
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
Footnotes
Partially supported by grant RFBR 18-01-00887
References
Adams, R. A. and Fournier, J. J. F., Sobolev spaces, Second ed., Pure and Applied Mathematics (Amsterdam), 140, Elsevier, Amsterdam, 2003.Google Scholar
Capozzi, A., Fortunato, D., and Salvatore, A., Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl. 124(1987), 482–494.CrossRefGoogle Scholar
Ekeland, I. and Témam, R., Convex analysis and variational problems. Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. https://doi.org/10.1137/1.9781611971088CrossRefGoogle Scholar
Kolmogorov, A. and Fomin, S., Elements of the theory of functions and functional analysis. Ukraine, 1999.Google Scholar
Mawhin, J. and Willem, M., Critical point theory and Hamiltonian systems. Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7CrossRefGoogle Scholar
Struwe, M., Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, Berlin, 2008.Google Scholar