Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T07:03:15.604Z Has data issue: false hasContentIssue false

On Singular Points of Normal Arcs of Cyclic Order Four

Published online by Cambridge University Press:  20 November 2018

G. Spoar
Affiliation:
University of Guelph, Guelph, Ontario
N. D. Lane
Affiliation:
McMaster University, Hamilton, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [5] N. D. Lane and P. Scherk discuss arcs in the conformai (inversive) plane which are met by every circle at not more than three points; i.e., arcs of cyclic order three. This paper is concerned with the analysis of normal arcs of cyclic order four in the conformai plane.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Haupt, O. and Künneth, H., Geometrische Ordnungen, Springer-Verlag, Berlin (1967).Google Scholar
2. Haupt, O., Bemerkungen zum Kneserschen Vierscheitelsatz, Abh. Math. Sem. Univ. Hamburg 31 (1967), 218-238.Google Scholar
3. Haupt, O., Ein Satz Über die reellen Raumkurven vierter Ordnung und seine Verallgemeinerung, Math. Ann. 108 (1933), 126-142.Google Scholar
4. Lane, N. D. and Scherk, P., Differentiable points in the conformai plane. Can. J. Math., 5 (1953), 512-518.Google Scholar
5. Lane, N. D. and Scherk, P., Characteristic and order of differentiable points in the conformai plane, Trans. Amer. Math. Soc, 81 (1956), 358-378.Google Scholar
6. Mukhopadhyaya, S., New methods in the geometry of a plane arc, I. Cyclic and sextactic points, Bull. Calcutta Math. Soc. I (1909).Google Scholar
7. Mukhopadhyaya, S., Extended minimum-number theorems of cyclic and sextactic points on a plane convex oval, Math. Z. 33 (1931), 648-662.Google Scholar