No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $S\,=\,K\left[ {{x}_{1}},\,\ldots \,,\,{{x}_{n}} \right]$ be the polynomial ring in
$n$-variables over a field
$K$ and
$I$ a monomial ideal of
$S$. According to one standard primary decomposition of
$I$, we get a Stanley decomposition of the monomial factor algebra
$S/I$. Using this Stanley decomposition, one can estimate the Stanley depth of
$S/I$. It is proved that
$\text{sdept}{{\text{h}}_{s}}\left( S/I \right)\,\ge \,\text{siz}{{\text{e}}_{S}}\left( I \right)$. When
$I$ is squarefree and
$\text{bigsiz}{{\text{e}}_{S}}\left( I \right)\,\le \,2$, the Stanley conjecture holds for
$S/I$, i.e.,
$\text{sdept}{{\text{h}}_{S}}\left( S/I \right)\ge \text{dept}{{\text{h}}_{S}}\left( S/I \right)$.